LECTURES NOTE ON
STRUCTURAL ANALYSIS

PREPARED BY

BISWAJIT BEHERA
(Lecture In Civil Engg.)

NILASAILA INSTITUTE OF SCIENCE &
TECHNOLOGY

Sergarh, Balasore, Odisha




NTENT

Chapter Topic Name Page No
No.
. REVIEW OF BASIC CONCEPTS 1580
: SIMPLE & COMPLEXSTRESS, STRAIN RS
3 STRESSES IN BEAM 36-48
4 COLUMNS AND STRUTS 49-64
s SHEAR FORCE AND BENDING MOMENT 65-77
$ SLOPE AND DEFLECTION 78-93
! INTERMINATE BEAMS 94-101
. 102-111

TRUSSES AND FRAMES




CHAPTER-1:- REVIEW OF BASIC CONCEPTS
FORCE
FORCE SYSTEM
Force is that which changes or tends to change the state of rest of uniform motion of a body along a straight
line. It may also deform a body changing its dimensions.The force may be broadly defined as an agent which
produces or tends to produce, destroys or tends to destroy motion.Ithas a magnitude and direction.
Mathematically: Force=Massx Acceleration.

Where F=force, M=mass and A=acceleration.

UNITS OF FORCE In C.GS. System: In this system, there are two units of force:

(1) Dyne and

(2) (if) Gram force (gmf).

Dyne is the absolute unit of force in the C.G.S. system. One dyne is that force which acting on a mass of one
gram produces in it anacceleration ofone centimeter per second2. In M.K.S. System: In this system, unit of
force is kilogram force (kgf). One kilogram force is that force which acting on a mass of one kilogram produces
in it an acceleration of 9.81 m/ sec2. In S.I. Unit: In this system, unit of force is Newton (N). One Newton is
that force which acting on a mass of one kilogram produces in it an acceleration of one m /sec2. 1 Newton =
105 Dyne.

EFFECT OF FORCE
A force may produce the following effects in a body, on which it acts:

1. It may change the motion of a body. i.e. if a body is at rest, the force may set it in motion. And if the body is
already in motion, the force may accelerate or decelerate it.

2. It may retard the forces, already acting on a body, thus bringing it to rest or in equilibrium.
3. It may give rise to the internal stresses in the body, on which it acts.

4. A force can change the direction of a moving object.

5. A force can change the shape and size of an object

SYSTEM OF FORCES

When two or more forces act on a body, they are called to form a system of forces.Force system is basically
classified into following types.

e Coplanar forces

e Collinear forces

e Concurrent forces

e Coplanar concurrent forces

e Coplanar non- concurrent forces

e Non-coplanar concurrent forces

e Non- coplanar non- concurrent force




EREE BODY DIAGRAM: The representation of reaction force on the body by removing all the support or
forces act from the body is called free body diagram.
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MOMENT OF A FORCE

It is the turning effect produced by a force, on the body, on which it acts. The moment of a force is equal to the
product of the force and the perpendicular distance of the point, about which the moment is required and the
line of action of the force. Mathematically, moment, M = P x | where P = Force acting on the body, andl =

Perpendicular distance between the point, about which the moment is required and the line of action of the
force.

Moment of a force about a point is the product of the force and the perpendicular distance of the point from the
line of action of the force.

Let a force P act on a body which is hinged at O.
Then, moment of P about the point O in the body is = F x ON,
where :ON = perpendicular distance of O from the line of action of the force F.




MOMENT OF A FORCE ABOUT AN AXIS

Let us consider a door leaf hinged to a vertical wall by several hinges. Let us consider a vertical axis XY
passing through hinges as shown in Fig 1.40.

Let a force F be applied to the door leaf at right angles to its plane and at a perpendicular distance of | from the
XY-axis. Then, moment of the force F about XY-axis =F x I.

UNIT OF MOMENT

Unit of moment depends upon unit of force and unit of length.
If, however, force is measured in Newton and distance is measured in meter, the unit of moment will be
Newton meter (Nm). If force is measured in kilo Newton and distance is measured in meter, unit of moment

will be kilo Newton meter (kNm) and so on. Unit of moment is the same as that of work. But work is
completely different from moment.

TYPES OF MOMENT
Broadly speaking, the moments are of the following two types:
1. Clockwise moments. 2. Anticlockwise moments.
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(a) Clockwise moments (h) Anticlockwise moments

PRINCIPLE OF MOMENTS

1. If a system of co-planar forces (concurrent or non-concurrent) is in equilibrium, the algebraic sum of the
moments of those forces about any point in their plane is zero, i.e., the sum of the clockwise moments about
any point in their plane is equal to the sum of the anticlockwise moments about the same point.

2. The algebraic sum of the moments of any number of co-planar forces (concurrent or non concurrent) about a
point lying on the line of action of their resultant is zero.

3. From 1 and 2 above, it can be concluded that if the algebraic sum of the moments of any number of co-planal
forces about any point in their plane is zero, either the forces are in equilibrium or their resultant passes through
that point.

COUPLE

A pair of two equal and unlike parallel forces (i.e. forces equal in magnitude, with lines of action parallel to
each other and acting in opposite directions) is known as a couple. As a matter of fact, a couple is unable to
produce any translator motion (i.e., motion in a straight line).But it produces a motion of rotation in the body,
on which it acts. The simplest example of a couple is the forces applied to the key of a lock, while locking or
unlocking it.




ENTROID
INTRODUCTION:

A body may be considered to be made up of a number of minute particles having weights having weights wl,
w2, w3,...,wn Which are attracted towards the centre of body. As the particles are considered negligible in
comparison to body, all the forces are considered to be parallel to each other. The resultant of all these forces
acting at a point known as Centre of Gravity (C.G).

Centre of gravily

CENTRE OF GRAVITY (C.G):

Centre of Gravity of a body is a fixed point with respect to the body, through which resultant of weights of all
particles of the body passes, at any plane .

CENTROID DEFINITION:

Centroid is the centre point or geometric centre of a plane figure like triangle, circle, quadrilateral, etc. The
method of finding centroid is same as finding C.G of a body.

METHODS FOR CENTRE OF GRAVITY

The centre of gravity (or centroid) may be found out by any one of the following two methods: 1. By
geometrical considerations

2. By moments
3. By graphical method
CENTRE OF GRAVITY BY MOMENTS

Consider a body of mass M whose centre of gravity is required to be found out. Divide the body into small
masses, whose centers of gravity are known as shown in Fig. 6.9. Let m1, m2, m3....; etc. be the masses of the
particles and (x1, y1), (X2, y2), (x3, y3), ...... be the co-ordinates of the centers of gravity from a fixed point O
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Let and be the co-ordinates of the centre of gravity of the body. From the principle of moments, we know that
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MOMENT OF INERTIA:

INTRODUCTION:

Moment of a force (P) about a point, is the product of the force and perpendicular distance (x) between the
point and the line of action of the force (i.e. P.x). If this moment is again multiplied by the perpendicular
distance (x) between the point and the line of action of the force i.e. P.x(x) = Px2, then this quantity is called

moment of inertia. .




ALCULATION OF MOMENT OF INERTIABY INTEGRATION METHOD:

The moment of inertia of an area may be found out by the method of integration: Consider a plane figure,
whose moment of inertia is required to be found out about X-X axis and Y-Y axis as shown in Fig 4.12. Let us
divide the whole area into a no. of strips. Consider one of these strips.

Let dA= Area of the strip

x = Distance of the centre of gravity of the strip on X-X axis and

y = Distance of the centre of gravity of the strip on Y-Y axis.

We know that the moment of inertia of the strip about Y-Y axis = dA.x2

Now the moment of inertia of the whole area may be found out by integrating above equation. i.e.,
lvyy=2dA.x2

Similarly Ixx = ZdA . y2

Unit: It depends on units of area and length If area=m2, length =m then,
M.I=m4 If area=mm2, length=mm then, M.I=mm4

IHEOREM OF PERPENDICULAR AXIS

If IXX and 1YY be the moments of inertia of a plane section about two perpendicular axis meeting at O, the
moment of inertia 1ZZ about the axis Z-Z, perpendicular to the plane and passing through the intersection of X-
X and Y-Y is given by:

Izz= Ixx+lyy

IHEOREM OF PARALLEL AXIS

It states, If the moment of inertia of a plane area about an axis through its centre of gravity is denoted by IG,
then moment of inertia of the area about any other axis AB, parallel to the first, and at a distance h from the
centre of gravity is given by:

|as= 1G+ ah2 Where

Ias= Moment of inertia of the area about an axis AB,

Ic= Moment of Inertia of the area about its centre of gravity

a = Area of the section, and

h = Distance between centre of gravity of the section and axis AB
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HAPTER-2:- SIMPLE MPLEXSTRE TRAIN

Stress
Stress is the internal resistance offered by the body to the external load applied to it per unit
cross sectional area. Stresses are normal to the plane to which they act and are tensile or

compressive in nature.
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As we know that in mechanics of deformable solids, externally applied forces acts ona body
and body suffers a deformation. From equilibrium point of view, this action should be opposed
or reacted by internal forces which are set up within the particlesof material due to cohesion.
These internal forces give rise to a concept of stress. Consider a rectangular rod subjected to
axial pull P. Let us imagine that the same rectangular bar is assumed to be cut into two halves
at section XX. The each portion of this rectangular bar is in equilibrium under the action of
load P and the internal forces acting at the section XX has been shown.

Now stress is defined as the force intensity or force per unit area. Here we use a symbol
[J to represent the stress.

Where A is the area of the X —X section




Here we are using an assumption that the total force or total load carried by the rectangular bar is
uniformly distributed over its cross — section. But the stress distributionsmay be for from uniform,
with local regions of high stress known as stress concentrations. If the force carried by a
component is not uniformly distributed over its cross — sectional area, A, we must consider a

small area, ‘0A’ which carries a small load ‘dP’, of the total force ‘P', Then definition of stress is

il
A

As a particular stress generally holds true only at a point, therefore it is definedmathematically

as

Units :

The basic units of stress in S.1 units i.e. (International system) are N / m? (or Pa) MPa =10° Pa
GPa = 10°Pa KPa

=10° Pa

Sometimes N / mm? units are also used, because this is an equivalent to MPa.

L1YPES OF STRESSES &
Only two basic stresses exists :
(1) normal stress

(2) shear stress.

Other stresses either are similar to these basic stresses or are a combination of this e.g. bending
stress is a combination tensile, compressive and shear stresses. Torsional stress, as encountered in
twisting of a shaft is a shearing stress. Let us define the normal stresses and shear stresses in the
following sections.

Normal stresses : We have defined stress as force per unit area. If the stresses are normal to the
areas concerned, then these are termed as normal stresses. The normal stresses are generally
denoted by a Greek letter (o)




Area

a1
0

This is also known as uniaxial state of stress, because the stresses acts only in one direction
however, such a state rarely exists, therefore we have biaxial and triaxial state of stresses where
either the two mutually perpendicular normal stresses acts or three mutually perpendicular normal

stresses acts as shown in the figures below :
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(Biaxial state of stress) / o

o]

G3

(Triaxial state of stress)

Tensile or compressive Stresses:

The normal stresses can be either tensile or compressive whether the stresses acts outof the area

or into the area

a
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(Tensile stress)
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{(Compressive stress)




Bearing Stress: When one object presses against another, it is referred to a bearingstress ( They

are in fact the compressive stresses ).

Forces
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Bearing stresses at
the contact surface

Sign convections for Normal stress
Direct stresses or normal stresses
- tensile +ve

- compressive —ve

Shear Stresses:

Let us consider now the situation, where the cross — sectional area of a block of material is
subject to a distribution of forces which are parallel, rather than normal, to the area concerned.
Such forces are associated with a shearing of the material, and are referred toas shear forces. The
resulting stress is known as shear stress.

Forces acting parallel
to the area concermed

/ /




The resulting force intensities are known as shear stresses, the mean shear stress being equal to

e
A

Where P is the total force and A the area over which it acts. As we know that the particular stress

generally holds good only at a point therefore we can define shear stress at a point as
&F

= lim —
&R0 54

The Greek symbol [ (tau, suggesting tangential) is used to denote shear stress.

Complementary shear stresses:

The existence of shear stresses on any two sides of the element induces complementary shear
stresses on the other two sides of the element to maintain equilibrium. As shown in the figure the
shear stress [ in sides AB and CD induces a

complimentary shear stress [] * in sides AD and BC.
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- tending to turn the element C.W +ve.
- tending to turn the element C.C.W — ve.
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Consider a bar AB hanging freely under its own weight as shown in the figure.
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Let
L= length of the bar
A= cross-sectional area of the bar
E= Young’s modulus of the bar material w=
specific weight of the bar material
WL
Then deformation due to the self-weight of the bar is oL= o=

Members in Uni — axial state of stress
Introduction: [For members subjected to uniaxial state of stress]
For a prismatic bar loaded in tension by an axial force P, the elongation of the bar canbe

determined as

_PL
T AE

5 (1)

Suppose the bar is loaded at one or more intermediate positions, then equation
(1) can be readily adapted to handle this situation, i.e. we can determine the axial force in each part
of the bar i.e. parts AB, BC, CD, and calculate the elongation or shortening of each part separately,
finally, these changes in lengths can be added algebraically toobtain the total charge in length of

the entire bar.




1=

When either the axial force or the cross — sectional area varies continuosly along the axis of the
bar, then equation (1) is no longer suitable. Instead, the elongation can be found by considering a

deferential element of a bar and then the equation (1) becomes

di = P dx
EA,

5o LB, di
JEA,

i.e. the axial force Pxand area of the cross — section Ax must be expressed as functions of
X. If the expressions for Pxand Ax are not too complicated, the integral can be evaluated

analytically, otherwise Numerical methods or techniques can be used to evaluate these integrals.

inciple of »

The principle of superposition states that when there are numbers of loads are acting together on

an elastic material, the resultant strain will be the sum of individual strains.




When a single force or a system force acts on a body, it undergoes some deformation. This
deformation per unit length is known as strain. Mathematically strain may be defined as
deformation per unit length.

So,

Strain=Elongation/Original length

Or, [J DD—I

I
Elasticity:

The property of material by virtue of which it returns to its original shape and size upon removal

of load is known as elasticity.
Hooks Law
It states that within elastic limit stress is proportional to strain. MathematicaIIyE:

Stress
Strain

Where E = Young’s Modulus
Hooks law holds good equally for tension and compression.
Poi »s Ratio:

The ratio lateral strain to longitudinal strain produced by a single stress is known as Poisson’s ratio.
Symbol used for poisson’s ratio is i or 1/ m.

julus of Elasticity ( , Ul

Young’s modulus is defined as the ratio of stress to strain within elastic limit.

formation of a body due to load acting orl |

We know that young’s modulus E = Stress

Strain

5= P

AE




Shear Strain

The distortion produced by shear stress on an element or rectangular block is shown inthe figure.
The shear strain or ‘slide’ is expressed by angle ¢ and it can be defined as the change in the right

angle. It is measured in radians and is dimensionless in nature.

) : //

For elastic materials it is found that shear stress is proportional to the shear strain within elastic

Modulus of Riqgidi

limit. The ratio is called modulus rigidity. It is denoted by the symbol ‘G’ or ‘C’.

_ shear stress  N/mm?
shear strain

Bulk modulus (K): It is defined as the ratio of uniform stress intensity to the volumetric
strain. It is denoted by the symbol K.

_ stress intensity

volumetric strain

lation | it _
Elastic constants: These are the relations which determine the deformations producedby a given

stress system acting on a particular material. These factors are constant within elastic limit, and

known as modulus of elasticity E, modulus of rigidity G, Bulk modulus K and Poisson’s ratio .

Relationship between modulus of elasticity (E) and bulk modulus (K):

E =3K(1-2p)
Relationship between modulus of elasticity (E) and modulus of rigidity (G):
E=2G(1+p)

Relation among three elastic constant

9KG
G+3K




ress — strain diagram for mil I
A typical tensile test curve for the mild steel has been shown below
(.,A

PARTIALLY PLASTIC | /
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True stress-
strain diagram
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conventionzl stress-strain
D diagram or nominal stress-
strain diagram

slress
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rupture strength
(it Is the stress at
failure)
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O‘Y strain —> €

Linear range

ALIENT POINTS OF THE GRAPH:
(A) So it is evident form the graph that the strain is proportional to strain or elongation is
proportional to the load giving a st.line relationship. This law of proportionality is valid upto a
point A.
or we can say that point A is some ultimate point when the linear nature of the graph ceases or
there is a deviation from the linear nature. This point is known as the limit of proportionality or
the proportionality limit.
(B) For a short period beyond the point A, the material may still be elastic in the sense that the
deformations are completely recovered when the load is removed. The limiting point B is termed
as Elastic Limit .
(C) and (D) - Beyond the elastic limit plastic deformation occurs and strains are not totally

recoverable. There will be thus permanent deformation or permanent set

(E) A further increase in the load will cause marked deformation in the whole volume of the
metal. The maximum load which the specimen can with stand without failure is called the load at
the ultimate strength.

The highest point ‘E' of the diagram corresponds to the ultimate strength of a material.

sy = Stress which the specimen can with stand without failure & is known as Ultimate

Strength or Tensile Strength.




su is equal to load at E divided by the original cross-sectional area of the bar.

(F) Beyond point E, the bar begins to forms neck. The load falling from the maximum until
fracture occurs at F. Beyond point E, the cross-sectional area of the specimen begins to reduce
rapidly over a relatively small length of bar and the bar is said to form a neck. This necking takes

place whilst the load reduces, and fracture of the bar finally occurs at point F.

when load is removed. These two points are termed as upper and lower yield points respectively.
The stress at the yield point is called the yield strength.

A study a stress — strain diagrams shows that the yield point is so near the proportional limit that
for most purpose the two may be taken as one. However, it is much easier to locate the former. For
material which do not posses a well define yield points, In order to find the yield point or yield
strength, an offset method is applied.

In this method a line is drawn parallel to the straight line portion of initial stress diagramby off
setting this by an amount equal to 0.2% of the strain as shown as below and this happens

especially for the low carbon steel.
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ile and Brittl ials:

Based on this behaviour, the materials may be classified as ductile or brittlematerials

i Hlts
It we just examine the earlier tension curve one can notice that the extension of the materials over
the plastic range is considerably in excess of that associated with elastic loading. The Capacity of

materials to allow these large deformations or large extensions without failure is termed as

ductility. The materials with high ductility are termed as ductile materials.




Brittle Materials:

A brittle material is one which exhibits a relatively small extensions or deformations to
fracture, so that the partially plastic region of the tensile test graph is much reduced.

This type of graph is shown by the cast iron or steels with high carbon contents or concrete

Mechanical Properties of material:

Elasticity: Property of material by virtue of which it can regain its shape after removalof
external load

Plasticity: Property of material by virtue of which, it will be in a state of permanent

deformation even after removal of external load.
Ductility: Property of material by virtue of which, the material can be drawn intowires.

Hardness: Property of material by virtue of which the material will offer resistance to

penetration or indentation.




I n obli lane:

Till now we have dealt with either pure normal direct stress or pure shear stress. In many instances,
however both direct and shear stresses acts and the resultant stress acrossany section will be
neither normal nor tangential to the plane. A plane stse of stress is a 2 dimensional stae of stress in
a sense that the stress components in one direction are all zero i.e

O;=0yw=0x=0

Examples of plane state of stress include plates and shells. Consider the general case ofa bar

under direct load F giving rise to a stress [] y vertically

Thickness of the
element in z-dir is thin
\\\ and is taken unity.

unit depth

rj" T._| G

The stress acting at a point is represented by the stresses acting on the faces of the element
enclosing the point. The stresses change with the inclination of the planes passing through that
point i.e. the stress on the faces of the element vary as the angular position of the element changes.
Let the block be of unit depth now considering the equilibrium of forces on the triangle portion
ABC. Resolving forces perpendicular to BC, gives

1y .BC1l=1 ysinl .AB.1

but AB/BC = sin[] or AB = BC sin[]

Substituting this value in the above equation, we get
1y .BC1=1 ysinl .BCsinl .1or0; 0 0 ysin®20

Now resolving the forces parallel to BC

1y .BC1l=17 ycos 1 .ABsin. 1
again AB = BC cos [




1)

1 .BC1l=10 ycos .BCsinl .lorl =0 ysin]
cos’!

| S
0 DD sin2[] (2)

27y

If (] =90° the BC will be parallel to AB and [1- = 0, i.e. there will be only direct stress or

normal stress.
By examining the equations (1) and (2), the following conclusions may be drawnThe value
of direct stress [1;; is maximum and is equal to [J y when v=90°.
The shear stress []- has a maximum value of 0.5 [J y when [] = 45°
Material ] re shear:
Consider the element shown to which shear stresses have been applied to the sides ABand DC

Loy -
A =
=1
Tu r 1
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Complementary shear stresses of equal value but of opposite effect are then set up onthe sides
AD and BC in order to prevent the rotation of the element. Since the applied and complementary
shear stresses are of equal value on the x and y planes. Therefore, they are both represented by the
symbol [J xy.

Now consider the equilibrium of portion of PBC




Assuming unit depth and resolving normal to PC or in the direction of [
15 .PC.1 =[xy .PB.cos! .1+ 4 .BCsinl .1
= xy.PB.cosl + 1 yx .BC.sinl

Now writing PB and BC in terms of PC so that it cancels out from the two sides PB/PC =sin[]
BC/PC = cos(]
1 .PC1=1 y.cosl sinl PC+I yx .cosl .sinl .PC

1y =20 yxsinl cosl
Or, 1, 0 20 yxysin2 D
Now resolving forces parallel to PC or in the direction of [ then [y PC.1
=[ y.PBsinl -1y BC cosl
-ve sign has been put because this component is in the same direction as that of [, .again
converting the various quantities in terms of PC we have
[] PCxyl=0 .PB.syin® 1 1 -1 PCcQs®l yy
=-0 [cog’l -sin’l ]
= -[ xy cos2] 2
the negative sign means that the sense of [] ; is opposite to that of assumed one. Let usexamine

the equations (1) and (2) respectively
From equation (1) i.e,
- = Oy sin2J

The equation (1) represents that the maximum value of [, is [1x, when [] = 45°.Let us takeinto

consideration the equation (2) which states that




17 =-1 xycos2l

It indicates that the maximum value of [, is [] whexn [ = 0% or 90°. it has a value zero when [
= 45°,

From equation (1) it may be noticed that the normal component has maximum

and minimum values of + xy (tension) and xy(compression) on plane at + 45° to the applied shear
and on these planes the tangential component is zero.

Hence the system of pure shear stresses produces and equivalent direct stress system, one set
compressive and one tensile each located at 45° to the original shear directionsas depicted in the

figure below:

Now consider a rectangular element of unit depth, subjected to a system of two direct stresses both

tensile, x and yacting right angles to each other.

Ty -\.\\1
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for equilibrium of the portion ABC, resolving perpendicular to AC
[J-.AC.1=[]ysin[J.AB.1+ [Jx cos [].BC.1

converting AB and BC in terms of AC so that AC cancels out from the sides
O-=0 sin?,0+0 cog’0

Futher, recalling that cos?(] - sin?[] = cos2[] or (1 - cos2[] )/2 = sin?[] Similarly(1
+¢0s2[1)/2 = cos?q

Hence by these transformations the expression for reduces to

=1/2 6 y(1+ cos2®) + 1/2 o x(1 + cos2[ ][]

) On rearranging the various terms we get

Ty = [gﬁ%] +[ﬂ"c _U"r]cnszﬁ'
2 2
(3) (3)

The — ve sign appears because this component is in the same direction as that of AC. Again

converting the various quantities in terms of AC so that the AC cancels out fromthe two sides.
Ty-ALT = [1cosfsing - o, sindcosd JAC
Ty = (0, — 0, )sinfcost

(gx - Uy]' .
=——~ ginZf
5 SN

(o, -0

or % = — 1’rjlsinzt?

(4) (4)

Conclusions :

The following conclusions may be drawn from equation (3) and (4)
1.The maximum direct stress would be equal to x0r ywhichever is the greater, when
=0°%or 90°
2.The maximum shear stress in the plane of the applied stresses occurs when =
45°




Material ] mbin ir nd shear str

Now consider a complex stress system shown below, acting on an element of material. The
stresses xand y may be compressive or tensile and may be the result of directforces or as a
result of bending.The shear stresses may be as shown or completelyreversed and occur as a

result of either shear force or torsion as shown in the figurebelow:

A a5,
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A B
- P Ty
A Ox
an
Tuv
D -— 1 C
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As per the double subscript notation the shear stress on the face BC should be notifiedas yx,
however, we have already seen that for a pair of shear stresses there is a set of complementary
shear stresses generated such that

By looking at this state of stress, it may be observed that this state of stress is combination of two
different cases:

(i) Material subjected to pure shear. In this case the various formulas deserved are as follows

(i) Material subjected to two mutually perpendicular direct stresses. In this case the various
formula's derived are as follows.

_(0,+9,) (5,79
i 2
. (ay - gy:l

cos2f

T sin 28

To get the required equations for the case under consideration,let us add the respective equations

for the above two cases such that




a, o+ a, -
a, ool o 1"r:||::1:152t?+ T, Sin28
2 2 ¥
_[JI _':r;r:' .
Tz —TngE—TwcusZE

These are the equilibrium equations for stresses at a point. They do not depend onmaterial

proportions and are equally valid for elastic and inelastic behaviour

This egn gives two values of 2 that differ by 180° .Hence the planes on which maximumand

minimum normal stresses occurate 90%part.

; .. der
Far o, to be a maximum ar minimum d—;‘ =0

[+ e
g, +a g, - o
T4 :( I yj+( * chns?ﬁw Ty SN 28
2 2
gi?::—%{UI—G&]QHEEE+TWCDSEEE

=0
le.- (o, - o Jsin2d+ 1 cos2d =0

T C05282 = (g, - g,)sinif

27
Thus, tan2§ = — %
fa, - U}r:l

From the triangle it may be determined

cos2é = (o _:Yj
ﬁﬁ—a“4dﬁw
2T
5in28 = il

-\{(':rx - ':r'g.rjl2 + 41211;

(0~ o)

Substituting the values of cos2 and sin2 in equation (5) we get




cosZ2f + 1. sinZf

2 2 -
a :(U;.:+U.!Ir:|+|iﬂ'x—gy:| (GI_U.!I:I
a 2 2 "JEUI —U-!I,-f +4T‘2w
+ TW'ETW
»\l'[ﬂx -u_’,ryj2 +d12r:.f
(o + ) 1 (0 - 0,)°
2 Jlog - oyt + 472,
L 411
2\’(0 -crj +412
ar
:[01+Gy:| 1 |:U —gj +4,].2
. ‘Jl:'j ‘Cf +;11-'2
IO e s
2 2 -J':UI —UY]E +J-_1']-leqlr
Ze T %EU"‘ volt %-J‘:C’x -0, + 47,

Hence we get the two values of o, which are designated o, as o, and respectively therefare

1 1

(0, +0,)+ E.J[crx —o ) edr,
1 1

S+ 0y) = Zflo, - o f 47,

The o, and o, are termed asthe principle stresses of the system.

Substituting the values of cos28 and sin2é in egquation (5) we see that

ay =

02=

Ty = %[cr -0, ) sin28 - 1, cos2d
1 2T Ty LTy = 0]
25[01_%] e ol xz ¥
Jlox -0, eart, J(a o, F v a1,
T, =0

This shows that the values oshear stress is zero on the principal planes.
Hence the maximum and minimum values of normal stresses occur on planes of zero shearing
stress. The maximum and minimum normal stresses are called the principal stresses, and the planes

on which they act are called principal plane the solution of equation

2
tan2é, = Ty
(gx - l:r'!,l':I




will yield two values of 2 separated by 180° i.e. two values of  separated by 90° .Thus the two
principal stresses occur on mutually perpendicular planes termed principal planes.
Therefore the two — dimensional complex stress system can now be reduced to the equivalent

system of principal stresses.

Principle planes Ref
[ —ve
Ty
—_— Ty
Ty +ye

31 G2

Y
Let us recall that for the case of a material subjected to direct stresses the value of maximum shear

stresses

—

Toam -0, - at f = 48" Thus, for a 2-dimensional state of stress subjected to principle stresses

o = = (0~ 0;), on substituting the values if oy and o, we get

_ 1 z
T o 5,‘![01 - cryj + 41113‘
Alternatively this expression can also be obtained by differentiating the expression for %, with respect to & i.e.

a, =
Ty = %sin?ﬂ— Ty Lo 528

P — B2

%‘ = —%[ax - 0,)c05282 + 7, 5in26.2
=0
ar (o, - o, Jeos28 + 21 sin2d =1

[Uy -a,) (g, - Uy:l

tan2d. = = -
e Ei
a,-a
tanzﬂs = —M
ETW
Recalling that
21
tan2fy = —X
(0, -0,)
Thus,

|tan265 tan28, =1|




Therefore,it can be concluded that the equation (2) is a negative reciprocal of equation (1) hence the
roots for the double angle of equation (2) are 90° away from the corresponding angle of equation
(1).

This means that the angles that angles that locate the plane of maximum or minimum shearing
stresses form angles of 45° with the planes of principal stresses.

Futher, by making the triangle we get

27
cosZ2fd = I;
,J(cry o, 4P,
in2p = 0 %)

Jlo, -0 P s

Therefare by substitutingthevaluesof cos2fand sinZ #we have

Ta = slo, - o, )sindd - cos2d

- (ox- oy)

2Tuy
Because of root the difference in sign convention arises from the point of view of locating the
planes on which shear stress act. From physical point of view these sign have no meaning.
The largest stress regard less of sign is always know as maximum shear stress.

Principal plane inclination in terms of associated principal stress:

2T
tan28, = il

EGI B U\,rj'

We know that the equation

yields two values of q i.e. the inclination of the two principal planes on which the principal stresses

s1and sz act. It is uncertain,however, which stress acts on which plane unless equation.




(o, +a. ] (o, -al _
.= LA o526 + 1, 5in 28 i .
2 2 Is used and observing which one of the

two principal stresses is obtained.
Alternatively we can also find the answer to this problem in the following manner

| —unit depth

Og or Op
(c1.02) c
Consider once again the equilibrium of a triangular block of material of unit depth, Assuming AC
to be a principal plane on which principal stresses pacts, and the shear stress is zero.
Resolving the forces horizontally we get:
x.BC.1+ x5 AB.1= ,.cos .AC dividing the above equation through by BC we get

J,.+ T E:u EDSEE
=T P ‘BC

aor
Ty + T tant = ap
Thus




RAPHICAL SOLUTION - MOHR'S STRE IRCLE
The transformation equations for plane stress can be represented in a graphical form known as
Mobhr's circle. This grapical representation is very useful in depending the relationships between
normal and shear stresses acting on any inclined plane at a pointin a stresses body.

To draw a Mohr's stress circle consider a complex stress system as shown in the figure
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The above system represents a complete stress system for any condition of applied load in two
dimensions
The Mohr's stress circle is used to find out graphically the direct stress and sheer stress on any
plane inclined at to the plane on which « acts.The direction of here is takenin anticlockwise
direction from the BC.
STEPS:
In order to do achieve the desired objective we proceed in the following manner
1. Label the Block ABCD.
2. Setup axes for the direct stress (as abscissa) and shear stress (as ordinate)
3. Plot the stresses on two adjacent faces e.g. AB and BC, using the following sign
convention.
4. Direct stresses tensile positive; compressive, negative Shear stresses

5. tending to turn block clockwise, positive. tending to turn block counter clockwise, negative

[ i.e shearing stresses are +ve when its movement about the centre of the elementis

clockwise ]




This gives two points on the graph which may than be labeled as respectively todenote
stresses on these planes.

(i) join AB and BC
(i) The point P where this line cuts the s axis is than the centre of Mobhr's

stress circle and the line joining is diameter. Therefore the circle can now be drawn. Now every

point on the circle then represents a state of stress on some plane through C.

(180 - p)
Oy

Proof:




(1) The direct stress is maximum when Q is at M and at this point obviously thesheer
stress is zero, hence by definition OM is the length representing the maximum principal stresses 1
and 2 1 gives the angle of the plane 1 from BC. Similar OL is the other principal stress and is
represented by »

(2) The maximum shear stress is given by the highest point on the circle and is represented
by the radius of the circle.

This follows that since shear stresses and complimentary sheer stresses have the same value;
therefore the centre of the circle will always lie on the s axis midway between yandy. [ since +
xy & xyare shear stress & complimentary shear stress so they are same in magnitude but different
in sign. |

(3) From the above point the maximum sheer stress i.e. the Radius of the Mohr's stress
circle would be

(0, - 0.
2

While the direct stress on the plane of maximum shear must be mid — may between

and yi.e
(o, + )
2
L ]
.
— 1
AB H"“‘\
\ \/ﬁ -
\ P
(o + LT”‘“H_H______,,-F-' BC
- : -
4) As already defined the principal planes are the planes on which the shearcomponents are
zero.

Therefore are conclude that on principal plane the sheer stress is zero.
(5) Since the resultant of two stress at 90° can be found from the parallogram of vectors as
shown in the diagram.Thus, the resultant stress on the plane at g to BC is given by OQ on Mohr's

Circle.




(6) The graphical method of solution for a complex stress problems using Mohr's circle is a
very powerful technique, since all the information relating to any plane within the stressed
element is contained in the single construction. It thus, provides a convenientand rapid means of

solution. Which is less prone to arithmetical errors and is highly recommended.

Numericals:
Let us discuss few representative problems dealing with complex state of stress to be solved either
analytically or graphically.
Q 1: A circular bar 40 mm diameter carries an axial tensile load of 105 kN. What is the Value of
shear stress on the planes on which the normal stress has a value of 50 MN/m? tensile.
Solution:
Tensile stress = F/ A =105 x 103/ x (0.02)?
= 83.55 MN/m?
Now the normal stress on an oblige plane is given by the relation
= AB sin?
50 x 10° = 83.55 MN/m? x 105sin?
=50°68'
The shear stress on the oblique plane is then given by
=1/2 AB ysin2
=1/2 x 83.55 x 10°x sin 101.36
=40.96 MN/m?
Therefore the required shear stress is 40.96 MN/m?
Q2:

For a given loading conditions the state of stress in the wall of a cylinder is expressed as follows:




(a) 85 MN/m? tensile

(b) 25 MN/m? tensile at right angles to (a)

(c) Shear stresses of 60 MN/m? on the planes on which the stresses (a) and
(b) act; the sheer couple acting on planes carrying the 25 MN/m? stress is clockwise in effect.
Calculate the principal stresses and the planes on which they act. What would be the effect on
these results if owing to a change of loading (a) becomes compressive while stresses (b) and (c)
remain unchanged

Solution:

The problem may be attempted both analytically as well as graphically. Let us first obtainthe

analytical solution

25 M

™ eomn

m®

85 MN
2

The principle stresses are given by the formula

a,andad,

(0p + a,) % ;—J(ax —a )t e dr,

| = bJ] —

(B5 +25) £ %J(aa + 250 + (43607
1

m

5+ — B0+5 =55 + 67

ra|

= 0, =122 MN/m*

7y = =12 MM/ m? {compressive)

For finding out the planes on which the principle stresses act us the equation

27
tan28=[ = ]
0y = Oy

The solution of  this equation will  yeild two  values i.ethey
rand  2giving 1=31°71'& ,=121°71




(b) In this case only the loading (a) is changed i.e. its direction had been changed. Whilethe other

stresses remains unchanged hence now the block diagram becomes.

Again the principal stresses would be given by the equation.

A

1 1 5 25 MN
Oy &gy = (o, +o,  x=flo, -7 +4'-'21 m?
1 2 1 ’ EJ ’ —— BoMN
= 5(_35 +26) ¢ 5\!(_85 - 287 + (4xG0%) m
- Veoye 1 a5 - 257 + (B
2 2 85 MN
= -30 :%mz*lun + 14400 ¥ m

-30 £81.4 -
gy =514 MN/m®; oy = -111.4 MN/m?
Again far finding out the angles use the follo "ing equatian.

27
tanEE:[ il ]
gy = 0y

_ 2xB0 _ 120
-B5-26  -110
_ 12
11
12
28 =tan| -—=
[ 11]
= #=-2374°

Thus, the two principle stresses acting on the two mutually perpendicular planes i.e

principle planes may be depicted on the element as shown below:
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So this is the direction of one principle plane & the principle stresses acting on this would be 1
when is acting normal to this plane, now the direction of other principal plane would be 90° +
because the principal planes are the two mutually perpendicular plane, hence rotate the another
plane+ 90° in the same direction to get the another plane, now complete the material element if is
negative that means we are measuring the angles in the opposite direction to the reference plane
BC.

ref.plane
1
+"'¢|IE IT.-I-
——— o
=k
h..‘:? -:‘:'Fg'
G
~ S

Therefore the direction of other principal planes would be { + 90} since the angle is always less
in magnitude then 90 hence the quantity ( + 90 ) would be positive
therefore the Inclination of other plane with reference plane would be positive therefore if just

complete the Block. It would appear as

Ref.plane




If we just want to measure the angles from the reference plane, than rotate this blockthrough

180° so as to have the following appearance.
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So whenever one of the angles comes negative to get the positive value, firstAdd 90°
to the value and again add 90° as in this case = 23%74
so 1= 23°74' + 90°= 66°26' .Again adding 90° also gives the direction of other
principle planes
i.e 2=66%26"+ 90°= 156°26'
This is how we can show the angular position of these planes clearly.
GRAPHICAL SOLUTIONZ
Mohr's Circle solution: The same solution can be obtained using the graphical solution

i.e the Mohr's stress circle,for the first part, the block diagram becomes

4 25 MN
m G0 MM
m:‘
A B
R 60 MN
'\.\ m:;
\\
D =——— C

Construct the graphical construction as per the steps given earlier.
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Taking the measurements from the Mohr's stress circle, the various quantities computedare
1 =120 MN/m? tensile
2 =10 MN/m? compressive
1 = 34% counter clockwise from BC
2 = 34%+ 90 = 124° counter clockwise from BC
Part Second : The required configuration i.e the block diagram for this case is shownalong

with the stress circle.

By taking the measurements, the various quantites computed are given as
1=56.5 MN/m? tensile




2 = 106 MN/m? compressive
1 = 66°15' counter clockwise from BC
2 = 156°15' counter clockwise from BC
Salient points of Mohr's stress circle:
1.complementary shear stresses (on planes 90° apart on the circle) are equal in
magnitude
2.The principal planes are orthogonal: points L and M are 180° apart on the circle (90%part in
material)
3. There are no shear stresses on principal planes: point L and M lie on normalstress
axis.
4.The planes of maximum shear are 45° from the principal points D and E are 90°,
measured round the circle from points L and M.
5. The maximum shear stresses are equal in magnitude and given by points D and E 6.The
normal stresses on the planes of maximum shear stress are equal i.e. points Dand E both have
normal stress co-ordinate which is equal to the two principal

stresses.

5

—

As we know that the circle represents all possible states of normal and shear stress on any plane
through a stresses point in a material. Further we have seen that the co- ordinates of the point ‘Q’

are seen to be the same as those derived from




equilibrium of the element. i.e. the normal and shear stress components on any plane passing
through the point can be found using Mohr's circle. Worthy of note:
1.The sides AB and BC of the element ABCD, which are 90° apart, are represented

on the circle by ABPand BC P and they are 180° apart.
2.1t has been shown that Mohr's circle represents all possible states at a point. Thus, it canbe seen at
a point. Thus, it, can be seen that two planes LP and PM, 180° apart on the diagram and therefore
90° apart in the material, on which shear stress is zero. These
planes are termed as principal planes and normal stresses acting on them are known as principal
stresses.
Thus, c1=0L
c2=0M
3.The maximum shear stress in an element is given by the top and bottom points of the circle i.e
by points J1and J2, Thus the maximum shear stress would be equal to the radiusof i.e. o max= 1/2(
o1+  ©2),the corresponding normal stress is obviously the distance OP = 1/2 (o xto y) ,
Further it can also be seen that the planes on which the shear stress is maximum are situated 90°
from the principal planes (on circle ), and 45° in the material.
4.The minimum normal stress is just as important as the maximum. The algebraic minimum stress
could have a magnitude greater than that of the maximum principal stress if the state of stress were
such that the centre of the circle is to the left of orgin.
ie.if 6 1 =20 MN/m? (say)
c 2= 80 MN/m? (say)
Then max™=( o1+c2/2)=50MN/m?
If should be noted that the principal stresses are considered a maximum or minimum
mathematically e.g. a compressive or negative stress is less than a positive stress, irrespective or
numerical value.
5.Since the stresses on perpendular faces of any element are given by the co- ordinates oftwo
diametrically opposite points on the circle, thus, the sum of the two normal stresses forany and all

orientations of the element is constant, i.e. Thus sum is an invariant for any particular state of stress.




Sum of the two normal stress components acting on mutually perpendicular planes at a point in a

state of plane stress is not affected by the orientation of these planes.

This can be also understand from the circle Since AB and BC are diametrically opposite thus,
whatever may be their orientation, they will always lie on the diametre or we can saythat their sum

won't change, it can also be seen from analytical relations

_ (':rx * ':ry:l (ax B ':ry:l

We know T = 5 + 5 cos 26 + 7, sin28
on plane BC; =0

nl= O x
onplane AB;  =270°

n= Oy

Thus cnit om= oxt oy
1. If o1= o2 the Mohr's stress circle degenerates into a point and no shearingstresses
are developed on xy plane.
2. If 6x+ oy=0, then the center of Mohr's circle coincides with the origin ofco-

ordinates.




CHAPTER-3:-STRESSES IN BEAM AND SHAFTS

Concept of Shear Force and Bending moment in beams:
When the beam is loaded in some arbitrarily manner, the internal forces and moments are
developed and the terms shear force and bending moments come into pictures which are helpful to

analyze the beams further. Let us define these terms

-

- 3T

 —
b

-—— -

-
T

o

I

Let]

Fig 1

Now let us consider the beam as shown in fig 1(a) which is supporting the loads P1, P2,Pzand is
simply supported at two points creating the reactions Ri and R: respectively. Now let us
assume that the beam is to divided into or imagined to be cut into two portions at a section AA.
Now let us assume that the resultant of loads and reactions to the left of AA is ‘F' vertically
upwards, and since the entire beam is to remain in equilibrium, thus the resultant of forces to the
right of AA must also be F, acting downwards. This forces ‘F' is as a shear force. The shearing
force at any x- section of a beam represents the tendency for the portion of the beam to one side of
the section to slide or shear laterally relative to the other portion.

Therefore, now we are in a position to define the shear force ‘F' to as follows:

At any x-section of a beam, the shear force ‘F' is the algebraic sum of all the lateral components of

the forces acting on either side of the x-section.




Sign Convention for Shear Force:
The usual sign conventions to be followed for the shear forces have been illustrated infigures 2

and 3.

F

The resultant force which is in the downward
direction and is towards the R.H.5 of the
X-seclion is +ve Shear Force.

The resultant force which is in upward
direction and is towards the L.H.5 of the
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Fig 2: Positive Shear Force

F

The resultant force which are in the downward
direction and is on the L.H.5 of the X-section
is -ve Shear Force.

The resultant force which are in upward
direction and is on the R.H.S of the
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Fig 3: Negative Shear Force




L
b7 v7d b
A A
R (a) Rz
P4 Pz A Pz
|
M ! M
" o
i i : y 1
} ! :
o vz : Pz 77
el | -
| A
|
R : Ra
b} A
Fig 4

Bending Moment:

Let us again consider the beam which is simply supported at the two prints, carrying loadsP1, P2
and Ps and having the reactions Riand R; at the supports Fig 4. Now, let us imagine that the beam
IS cut into two potions at the x-section AA. In a similar manner, as done for the case of shear force,
if we say that the resultant moment about the section AA of all the loads and reactions to the left of
the x-section at AA is M in C.W direction, then moment of forces to the right of x-section AA
must be ‘M' in

C.C.W. Then ‘M' is called as the Bending moment and is abbreviated as B.M. Now one can define

the bending moment to be simply as the algebraic sum of the moments about an x-section of all the

forces acting on either side of the section

Sign Conventions for the Bending Moment:
For the bending moment, following sign conventions may be adopted as indicated in Fig 5and Fig
6.




N |

Resultant moment on the L.H.S of Resultant moment on the R.H.S postion
the X-section is CW, then itis a of the X-section is C.C.W, then it may be
positive B.M considered as positive B.M
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Fig 5: Positive Bending Moment
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Fig 6: Negative Bending Moment
Some times, the terms ‘Sagging' and Hogging are generally used for the positive andnegative bending
moments respectively.
Bending Moment and Shear Force Diagrams:
The diagrams which illustrate the variations in B.M and S.F values along the length of thebeam

for any fixed loading conditions would be helpful to analyze the beam further.




Thus, a shear force diagram is a graphical plot, which depicts how the internal shear force‘F' varies
along the length of beam. If x denotes the length of the beam, then F is functionx i.e. F(x).
Similarly a bending moment diagram is a graphical plot which depicts how the internal bending
moment ‘M' varies along the length of the beam. Again M is a function x ie. M(x). Basic
Relationship Between The Rate of Loading, Shear Force and Bending Moment:

The construction of the shear force diagram and bending moment diagrams is greatly
simplified if the relationship among load, shear force and bending moment is established. Let us
consider a simply supported beam AB carrying a uniformly distributed loadw/length. Let us

imagine to cut a short slice of length dx cut out from this loaded beam atdistance ‘x' from the

ot WTWH

X45x

origin “0".

Q
AANAN

V3 Considered to
he detached

Y

Let us detach this portion of the beam and draw its free body diagram.

[T
l F+sF

The forces acting on the free body diagram of the detached portion of this loadedbeam are

the following
» The shearing force F and F+ 6F at the section x and x + 6x respectively.

» The bending moment at the sections x and x + 6x be M and M + dM respectively.




* Force due to external loading, if ‘w' is the mean rate of loading per unit length then the total
loading on this slice of length dx is w. dx, which is approximately acting through the centre ‘c'. If
the loading is assumed to be uniformly distributed then it would pass exactly through the centre ‘c'.
This small element must be in equilibrium under the action of these forces and couples. Now let

us take the moments at the point ‘c'. Such that

M+F.%}{+[F +6Fj.%}{: Bl + il

63 a3 _

=F = +(F+&F). == &M
2 2

=}F.Z—}{ +F.Z—}{ +5F.%}{= Gh [Meglecting the product of

8F and &x being small guantitie 5 |

= F .6 = &M
=F = 21
&
Under the limits dx— 0
o P
F=—— 1
= (1)

Resolvingthe forcesyerically we get
wif +(F +8F)=F

= W= —E
0
Under the limits dx— 0
=}-w=—£nr—i(ﬂ)
dx dx " dx
dF _ d*m

Conclusions: From the above relations, the following important conclusions may bedrawn
» From Equation (1), the area of the shear force diagram between any two points, from the basic
calculus is the bending moment diagram
WS IF.d}{
» The slope of bending moment diagram is the shear force, thus

_ aM
%

Thus, if F=0; the slope of the bending moment diagram is zero and the bending momentis

F

therefore constant.'




dhd
—=0.
* The maximum or minimum Bending moment occurs where dx
The slope of the shear force diagram is equal to the magnitude of the intensity of the distributed
loading at any position along the beam. The —ve sign is as a consequence of our particular choice

of sign conventions

Procedure for drawing shear force and bending moment diagram:

Preamble:

The advantage of plotting a variation of shear force F and bending moment M in a beam as a
function of ‘x' measured from one end of the beam is that it becomes easier to determine the
maximum absolute value of shear force and bending moment.

Further, the determination of value of M as a function of ‘x' becomes of paramountimportance so
as to determine the value of deflection of beam subjected to a given loading.

Construction of shear force and bending moment diagrams:

A shear force diagram can be constructed from the loading diagram of the beam. In order to draw
this, first the reactions must be determined always. Then the vertical components of forces and
reactions are successively summed from the left end of the beam to preserve the mathematical
sign conventions adopted. The shear at a section is simply equal to the sum of all the vertical

forces to the left of the section.

When the successive summation process is used, the shear force diagram should end up with the
previously calculated shear (reaction at right end of the beam. No shear forceacts through the
beam just beyond the last vertical force or reaction. If the shear force diagram closes in this

fashion, then it gives an important check on mathematical calculations.

The bending moment diagram is obtained by proceeding continuously along the length of beam
from the left hand end and summing up the areas of shear force diagrams givingdue regard to
sign. The process of obtaining the moment diagram from the shear force diagram by summation is

exactly the same as that for drawing shear force diagram from load diagram.




It may also be observed that a constant shear force produces a uniform change in the bending
moment, resulting in straight line in the moment diagram. If no shear force exists along a certain
portion of a beam, then it indicates that there is no change in moment takes place. It may also
further observe that dm/dx= F therefore, from the fundamental theorem of calculus the maximum
or minimum moment occurs where the shear is zero. In order to check the validity of the bending
moment diagram, the terminal conditions for the moment must be satisfied. If the end is free or
pinned, the computed sum must be equal to zero. If the end is built in, the moment computed by
the summation must be equal to the one calculated initially for the reaction. These conditions

must always be satisfied.

Illustrative problems:
In the following sections some illustrative problems have been discussed so as to illustrate the

procedure for drawing the shear force and bending moment diagrams

1. A cantilever of length carries a concentrated load ‘W' at its free end.

Draw shear force and bending moment.

Solution:

At a section a distance x from free end consider the forces to the left, then F = -W (for all values of
X) -ve sign means the shear force to the left of the x-section are in downward direction and
therefore negative

Taking moments about the section gives (obviously to the left of the section)

M = -Wx (-ve sign means that the moment on the left hand side of the portion is in the
anticlockwise direction and is therefore taken as —ve according to the sign convention)

so that the maximum bending moment occurs at the fixed end i.e. M =-W |

From equilibrium consideration, the fixing moment applied at the fixed end is WI and the reaction

is W. the shear force and bending moment are shown as,
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2. Simply supported beam subjected to a central load (i.e. load acting at the mid- way)
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By symmetry the reactions at the two supports would be W/2 and W/2. now consider anysection X-X

¥

from the left end then, the beam is under the action of following forces.

Y
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.So the shear force at any X-section would be = W/2 [Which is constant upto x < 1/2]
If we consider another section Y-Y which is beyond 1/2 then

S F = ﬂ - = ﬂ
for all values greater = I/2 Hence S.F diagram can beplotted as,
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.For B.M diagram:
If we just take the moments to the left of the cross-section,
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It may be observed that at the point of application of load there is an abrupt change inthe shear
force, at this point the B.M is maximum.
3. A cantilever beam subjected to U.d.L, draw S.F and B.M diagram.
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Here the cantilever beam is subjected to a uniformly distributed load whose intensity isgiven w
/ length.
Consider any cross-section XX which is at a distance of x from the free end. If we justtake the

resultant of all the forces on the left of the X-section, then

S.Fxx = -WXx for all values of ‘x'------------- (1)
S.Fxx =0
S.Fxx at x=1 = 'WI

So if we just plot the equation No. (1), then it will give a straight line relation. Bending Moment at
X-X is obtained by treating the load to the left of X-X as a concentrated load of the same value
acting through the centre of gravity.

Therefore, the bending moment at any cross-section X-X is

By, = - W x %

z

X
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2

The above equation is a quadratic in X, when B.M is plotted against x this will produces a
parabolic variation.

The extreme values of this would be at x=0and x = |

Wyl
B.May=1=- 5
|
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Hence S.F and B.M diagram can be plotted as follows:
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The total load carried by the span would be

= intensity of loading x length

=wxl

By symmetry the reactions at the end supports are each wl/2

If x is the distance of the section considered from the left hand end of the beam.
S.F at any X-section X-Xis

=E—W}{
2
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Giving a straight relation, having a slope equal to the rate of loading or intensity of theloading.




N =%| - WX

so at
S.FElt | =0 hencethe S.Fis zero atthe centre
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The bending moment at the section x is found by treating the distributed load as acting atits centre

of gravity, which at a distance of x/2 from the section
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So the equation (2) when plotted against x gives rise to a parabolic curve and the shearforce and

bending moment can be drawn in the following way will appear as follows:
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Loading restrictions:

As we are aware of the fact internal reactions developed on any cross-section of a beam may
consists of a resultant normal force, a resultant shear force and a resultant couple. In order to
ensure that the bending effects alone are investigated, we shall put a constrainton the loading
such that the resultant normal and the resultant shear forces are zero on any cross-section
perpendicular to the longitudinal axis of the member,

That means F=0

E:F:D

since 4% or M = constant.

Thus, the zero shear force means that the bending moment is constant or the bending is same at
every cross-section of the beam. Such a situation may be visualized or envisaged when the beam
or some portion of the beam, as been loaded only by pure couples at its ends. It must be recalled

that the couples are assumed to be loaded in the plane of symmetry.

M

Fig (2)
Fig (1)




When a member is loaded in such a fashion it is said to be in pure bending. The examples qf pure

bending have been indicated in EX land EX 2 as shown below :
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When a beam is subjected to pure bending are loaded by the couples at the ends, certain cross-
section gets deformed and we shall have to make out the conclusion that,

1. Plane sections originally perpendicular to longitudinal axis of the beam remain plane and
perpendicular to the longitudinal axis even after bending , i.e. the cross- section A'E', B'F' ( refer
Fig 1(a) ) do not get warped or curved.

2. In the deformed section, the planes of this cross-section have a common intersection

i.e. any time originally parallel to the longitudinal axis of the beam becomes an arc of circle.
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We know that when a beam is under bending the fibres at the top will be lengthened whileat the
bottom will be shortened provided the bending moment M acts at the ends. In between these there
are some fibres which remain unchanged in length that is they are not strained, that is they do not
carry any stress. The plane containing such fibres is called neutral surface.

The line of intersection between the neutral surface and the transverse exploratory section is
called the neutral axis Neutral axis (N A) .

Bending Str in Beams or Derivation of Elastic Flexural formula :

In order to compute the value of bending stresses developed in a loaded beam, let us consider the
two cross-sections of a beam HE and GF , originally parallel as shown infig 1(a).when the
beam is to bend it is assumed that these sections remain parallel i.e.H'E' and G'F" , the final
position of the sections, are still straight lines, they then subtend some angle .

Consider now fiber AB in the material, at a distance y from the N.A, when the beambends
this will stretch to A'B'

Therefare,
change inlength

strain in fibre AB = -
orginallength

_~E =g ButAE = CDandCD = C'D'
AB
refertafigl{a) andfigi(h)
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Since CD and C'D' are on the neutral axis and it is assumed that the Stress on the neutral axis zero.

J.gtrain =

Therefore, there won't be any strain on the neutral axis
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Consider any arbitrary a cross-section of beam, as shown above now the strain on a fibreat a
distance ‘y' from the N.A, is given by the expression

U=E
ﬁﬁf

if the shaded stripisof area'dA
then the force onthe strip is

F=g8a=Cy 8
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Moment about the neutral axiswould be =F y =g B4,

The toatl moment for the whaole
cross-section is therefore equal to
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Now the term 2yt A

is the property of the material and is called as a second moment of area of the cross-section and

is denoted by a symbol I.

Therefore
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This equation is known as the Bending Theory Equation. The above proof has involved the
assumption of pure bending without any shear force being present Therefore this termed as the
pure bending equation. This equation gives distribution ofstresses which are normal to cross-
section i.e. in x-direction.

ion Modulus:
From simple bending theory equation, the maximum stress obtained in any cross-section is

given as
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For any given allowable stress the maximum moment which can be accepted by aparticular

shape of cross-section is therefore

For ready comparison of the strength of various beam cross-section this relationship issome

times written in the form
|

M = Lo . where =
max

m
'axtermed as section modulus

The higher value of Z for a particular cross-section, the higher the bending moment which it can

withstand for a given maximum stress.

Theorems to determine second moment of area: There are two theorems which are helpful to

determine the value of second moment of area, which is required to be used while solving the

simple bending theory equation.

Second Moment of Area :

Taking an analogy from the mass moment of inertia, the second moment of area is defined as the

summation of areas times the distance squared from a fixed axis. (This property arised while we

were driving bending theory equation). This is also known as the moment of inertia. An alternative

name given to this is second moment of area, because the first moment being the sum of areas

times their distance from a

2
given axis and the second moment being the square of the distance or [y ,dA




Consider any cross-section having small element of area d A then by the definition

Ix(Mass Moment of Inertia about x-axis) = I Vafid ly(Mass Moment of Inertia about
y-axis) = [ da
Now the moment of inertia about an axis through ‘O' and perpendicular to the plane of figure is
called the polar moment of inertia. (The polar moment of inertia is also the area moment of
inertia).
i.e,
J = polar moment of inertia
= [ftaa
= Joo « Py
= [itda+]y2da

e s
ord=le +1 (1)

The relation (1) is known as the_perpendicular axis theorem and may be stated as follows:

The sum of the Moment of Inertia about any two axes in the plane is equal to the moment of
inertia about an axis perpendicular to the plane, the three axes being concurrent, i.e,the three
axes exist together.

CIRCULAR SECTION :

For a circular x-section, the polar moment of inertia may be computed in the following manner
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Consider any circular strip of thickness r located at a radius 'r'. Thanthe

area of the circular strip would be dA =2 r. r

Thus

J=[rda
Taking the limits of intergration from O to d/2
d

)
d= Irzzmﬁr
b

d
ol
ff-
however by perpendicular axisthearem
J=lx+ly
But for the circular cross-section the lxand lyare both
egual being moment of inertia about a diameter

1

ltm = iJ
-
I = =Ty

forahollow circular sectionof diameterD and d,
thevaluesof Jandlare definedas
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Parallel Axis Theorem:
The moment of inertia about any axis is equal to the moment of inertia about a parallelaxis

through the centroid plus the area times the square of the distance between theaxes.

If ‘ZZ' is any axis in the plane of cross-section and ‘XX' is a parallel axis through the centroid G,

of the cross-section, then
l, = _Hy + hj2 d& by definition (moment of inertia about an axis Z7)
= J[ +2vh +h?) A

= [y2da +n? [da +2hn ] yda

Since [ ydA= 0
= [y2da +n?[da
= [ytda +nla
o= I, +Ah? | =15 (since cross-section axes also pass through G)

YWhere & = Total area of the section
Rectangular Section:

For a rectangular x-section of the beam, the second moment of area may be computed asbelow :
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Consider the rectangular beam cross-section as shown above and an element of area dA
, thickness dy , breadth B located at a distance y from the neutral axis, which by symmetry passes

through the centre of section. The second moment of area | as defined earlier would be

= [yida
Thus, for the rectangular section the second moment of area about the neutral axis i.e., an axis

through the centre is given by
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Similarly, the second moment of area of the rectangular section about an axis through the lower

edge of the section would be found using the same procedure but with integral limits of 0to D .

Therefore 3o
These standards formulas prove very convenient in the determination of Ina for build up sections
which can be conveniently divided into rectangles. For instance if we just want to find out the

Moment of Inertia of an | - section, then we can use the above relation.
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Use of Flexure Formula:

Illustrative Problems:

An | - section girder, 200mm wide by 300 mm depth flange and web of thickness is 20mm is
used as simply supported beam for a span of 7 m. The girder carries a distributed load of 5 KN /m
and a concentrated load of 20 KN at mid-span.

Determine the

(i). The second moment of area of the cross-section of the girder




(ii). The maximum stress set up.
Solution:
The second moment of area of the cross-section can be determained as follows :
For sections with symmetry about the neutral axis, use can be made of standard | value for a
rectangle about an axis through centroid i.e. (bd 3 )/12. The section can thus be divided into
convenient rectangles for each of which the neutral axis passes through the centroid. Example in
the case enclosing the girder by a rectangle

l l - lshaded portion

_ Iznu xanu3l 0o o IEIEI x2503l o,

girder = rectangle

12 12
= (45-264 )10
=186=10* m*

]

The maximumstressmaybefound from

the simple bendingtheorybyequation :EDﬁlb:nm V//’ /7//
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In this case the loading of the beam is of two types

(@) Uniformly distributed load
(b) Concentrated Load

In order to obtain the maximum bending moment the technique will be to consider each loading on
the beam separately and get the bending moment due to it as if no otherforces acting on the

structure and then superimpose the two results.
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Shearing Stresses in Beams
All the theory which has been discussed earlier, while we discussed the bending stresses in beams

was for the case of pure bending i.e. constant bending moment acts along the entire length of the

beam.




HAPTER-4:- SLOPE AND
DEFLECTION OF BEAM

Introduction:
In all practical engineering applications, when we use the different components, normally we have
to operate them within the certain limits i.e. the constraints are placed on the performance and
behavior of the components. For instance we say that the particular component is supposed to
operate within this value of stress and the deflection of the component should not exceed beyond a
particular value.
In some problems the maximum stress however, may not be a strict or severe condition but there
may be the deflection which is the more rigid condition under operation. It is obvious therefore to
study the methods by which we can predict the deflection of members under lateral loads or
transverse loads, since it is this form of loading which will generally produce the greatest
deflection of beams.
Assumption: The following assumptions are undertaken in order to derive a differential equation
of elastic curve for the loaded beam
1. Stress is proportional to strain i.e. hooks law applies. Thus, the equation is valid only for
beams that are not stressed beyond the elastic limit.

2. The curvature is always small.
3. Any deflection resulting from the shear deformation of the material or shear
stresses is neglected.
It can be shown that the deflections due to shear deformations are usually small andhence can

be ignored.
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Consider a beam AB which is initially straight and horizontal when unloaded. If under the action
of loads the beam deflect to a position A'B' under load or infact we say that theaxis of the
beam bends to a shape A'B'". It is customary to call A'B' the curved axis of the beam as the elastic
line or deflection curve.

In the case of a beam bent by transverse loads acting in a plane of symmetry, the bending
moment M varies along the length of the beam and we represent the variation of bending moment

in B.M diagram. Further, it is assumed that the simple bending theory equation holds good.
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If we look at the elastic line or the deflection curve, this is obvious that the curvature at every point
is different; hence the slope is different at different points.

To express the deflected shape of the beam in rectangular co-ordinates let us take two axes x and y,
x-axis coincide with the original straight axis of the beam and the y

— axis shows the deflection.

Further,let us consider an element ds of the deflected beam. At the ends of this element let us
construct the normal which intersect at point O denoting the angle between these two normal be di

But for the deflected shape of the beam the slope i at any point C is defined,

tani=ﬂ oo i=d—yﬁasumingtani=i
dx dx

Futher

ds =Rdi

hiowe e er

ds = dx [usually for smallcury ature]
Hence

ds = dx =Rdi

di _ 1

dx R
substitutingthevalueofi, one get
d{dy]:1 rdzj,r_ 1
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This is the differential equation of the elastic line for a beam subjected to bending in the plane of

symmetry. Its solution y = f(x) defines the shape of the elastic line or the deflection curve as it is
frequently called.

Relationship between shear force, bending moment and deflection: The relationshipamong shear

force, bending moment and deflection of the beam may be obtained as Differentiating the equation as

derived
3
ﬂ=E|i§
dx dx
Thus,
da'_-,-'

i

Re calling 3M=F
i

F=El

Therefore, the above expression represents the shear force whereas rate of intensity ofloading can also

be found out by differentiating the expression for shear force

ie = —dF
' dx
d4j,r
w= —El
At

Therefare if'y'isthe deflection of the loadedbeam,
thenthefollowingimportantrelationscanbearrivedat

slnpe=3_§

B.M=EI$
shearforce = Elg_}
loaddistribution =E|:;3f_

Methods for finding the deflection: The deflection of the loaded beam can be obtained various
methods.The one of the method for finding the deflection of the beam is the direct integration

method, i.e. the method using the differential equation which we have derived.




Direct integration method: The governing differential equation is defined as

dfty Mo_ iy
bl = El or — =
df Bl o
ohintegrating one get,
dy _ [ M . o
2= ]|_dx+A----thisequation gives the slope
de " El

of theloadedbearn.
Integrate once again to get the deflectian.

y=”%d}{ + 4% +B

Where A and B are constants of integration to be evaluated from the known conditions of slope
and deflections for the particular value of x.
Ilustrative examples : let us consider few illustrative examples to have a familiarty with the

direct integration method

Case 1:

Cantilever Beam with Concentrated Load at the end:-

A cantilever beam is subjected to a concentrated load W at the free end, it is required to determine

the deflection of the beam

L J

In order to solve this problem, consider any X-section X-X located at a distance x from theleft end

or the reference, and write down the expressions for the shear force abd the bending moment




SF|,_, = -W
BM|,_, = -W.x

Therefore M| _, = -W.x
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substituting the value of M interms of x then integrating the equation one get

M _ d'y
Bl &d
dy W
i E
[ By [ W
i3 El
dy _ W
L=-_"_+A
dx  2EI

Integrating once more,
;
JR = [ e ] A

dx 2El
3

y = —W_H+A}{+Ei
BEI

The constants A and B are required to be found out by utilizing the boundaryconditions as
defined below

leatx=L;y=0 (Dat

Xx=L;dy/ldx=0 2

Utilizing the second condition, the value of constant A is obtained as




i

2El
While employing the first condition yields
W
W= - TET + AL +B

BEI
BEI  ZEI

Oyl - 3wl 2w

"~ BBl BEI

W
C3E

substituting the values of A and B we get
=1_|_W}{3 +WL2}{_WL3I
El| &El 2Bl 3EI
The slope aswell asthe deflection would be
maximum at the free end hence putting *=0 we get,
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Case 2:

A Cantilever with Uniformly distributed Loads:-

In this case the cantilever beam is subjected to U.d.l with rate of intensity varying w /length.The same

procedure can also be adopted in this case
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Boundary conditions relevant to the problem are as follows:
1.Atx=L;y=0
2. At x=L;dy/dx=0

The second boundary conditions yields

3

W E
A=+t —
BEI

whereasthe firstboundary conditions yields
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Case 3.

Simply Supported beam with uniformly distributed Loads:-

In this case a simply supported beam is subjected to a uniformly distributed load whoserate of

intensity varies as w / length.
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In order to write down the expression for bending moment consider any cross-section at

distance of x metre from left end support.
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The differential equation which gives the elastic curve for the deflected beam is
iy _ M _ [wl.}{_ﬂ}

&2 Bl EIL 2 2
dy _ [ wlx i
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Integrating, once more one gets
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Boundary conditions which are relevant in this case are that the deflection at eachsupport must
be zero.

le.atx=0;y=0:atx=lLy=0

let us apply these two boundary conditions on equation (1) because the boundaryconditions

are on 'y, This yields B = 0.
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mothe equation which gives the deflection curve is
1 IWL}{3 wrt wl® }{I

=l

Futher
In this case the maximum deflection will occur at the centre of the beam where x = L/2 [

i.e. at the position where the load is being applied ].So if we substitute the value of x = L/2Conclusions

B wL L3 wL3

(i) The value of the sle@é’%t‘he position where the deflection is maximum would be zero.

(i) Thevalue of maximum deflection would be at the centre i.e. at x = L/2. The

final equation which is governs the deflection of the loaded beam in this case is

_ 1 wl®  wit wlx
EIf 12 24 24

By successive differentiation one can find the relations for slope, bending moment, shearforce and

rate of loading.

Deflection (y)

P

yEl= IWLK3 Cwtwl? }{I -SWLY

12 24 24

Slope (dy/dx) /_‘ e

g Oy _ ISWL}{2 _ dund® wL3I Wi
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12 24 24 24
3" degree Polynomial
Bending Moment So the bending moment diagram would
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Shear Force
Shear force is obtained by taking

third derivative.
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Rate of intensity of loading
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Case 4:

The direct integration method may become more involved if the expression for entire beam is not
valid for the entire beam.Let us consider a deflection of a simply supported beam which is

subjected to a concentrated load W acting at a distance 'a' from the left end.

w
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Let R1 & R> be the reactions then,
W

A l 8 C
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B.Mfor the portion AB

Mg =Fix D<xca

B.M far the portion BC

My =Rpx-Wix-a)a<x<l

s0 the differential equation for the two caseswould be,

dfy
EIF—RN{

2
E|;'T§=R1H-W(x-a)

These two equations can be integrated in the usual way to find ‘y' but this will result infour
constants of integration two for each equation. To evaluate the four constants of integration, four
independent boundary conditions will be needed since the deflection of each support must be zero,
hence the boundary conditions (a) and (b) can be realized.
Further, since the deflection curve is smooth, the deflection equations for the same slope and
deflection at the point of application of load i.e. at x = a. Therefore four conditions required to
evaluate these constants may be defined as follows:

(@) at x=0; y=0inthe portion ABi.e.0<x<a

(b) at x=1; y =0 in the portion BC i.e. a<x <1

(c) at x = a; dy/dx, the slope is same for both portion
(d) at x = a; y, the deflection is same for both portion By

symmetry, the reaction R is obtained as

R, = Wik
a+h
Herce,
y _ Wb
= < L= T
EIHT e X ODixta (1
dy _ Wb
— - = - - T [,
Eld}{2 I:a+hj}{ W[ - &) aixil (2

integrating (1) and (2) we gat,

dy _ Wb s
e UL S D<K€a omammmnn
I avhy Kia )
?
dy _ Wh o Wli-a)
S - +k % TR 4
dx 2(a+h) 7 po AR )

Using condition (c) in equation (3) and (4) shows that these constants should be equal, hence

letting
Ki=K; =K




ElIL= 24k Ofxda----- 3
dx 2{a+b) " e )
z

dy_ Wb, W(x-a)
El—= - +k AV (AR 4
dx 2(a+b) Z s @
Integrating agian eguation (3)and (d)we get
Whoo 4
= 4 L g----=--
Ely E[a+|:|:|}{ +kx+ks Oixsa (5]
3
Ely = Wh }{3-W[H Gl +hi +ly At ugl------ (B)
B(a+h) B
Ltilizing condition (a)in equatian (5] yields
ky =0

Litilizing candition (h) in egquation (B) yields
wh o W(-a)’

= +kl+k
Bla +b) B 4
Who o W (l-a)®
k,=- I+ ~ ki
*  Bla+h) B
Euta+h=I,
Thus,
Whia +h? 3
o =- Vba¥h) Wb )

] ]

Now lastly ks is found out using condition (d) in equation (5) and equation (6), the
condition (d) is that,

At x = a; y; the deflection is the same for both portion




Therefore y| equations Vo T

or
3
Wh g _ Wb o Wi(x-3)
+hx +ky = = +hix +k
Bla+b) . 2 TElam) 3 S
3
Wb o Wh o, Wia-a)
— _a +ka+k; = = +ka +k
Bla+b) . o T EaTm) 3 LD
Thus, k,=0;
oOR
Wb (a+h)® | wp?
=- + - +hb' =
Ky - - k{a+b)=0o
Wb (2 +b1° yyps
kia+h)=- +
(a+b) = =
k:_Wh(a+h:|+ Wyh®
B G(a +b)
so the deflection equations for each portion of the beam are
Yh o g
Ely = ¥ +kx+k
=T P §
Whx®  Whia+bix Wb
Ely = = + ----for0£=x<a----- 7
YT B h) 5 5[ +b) orfsx<a-----{7)
and for other portion
_ Wb W(x-a)
ElY_E[a+h:|H E +hx+ky,
Substituting the value of 'k'inthe abave equation
oW(x-a)® Whia+b 3
Ely= Whie (x-a) = (@ j}{+ﬁ"“"”:'}{ Forforasz=I----- L=}

Bia+b) B = Bla+h)
so either of the equation (7 or (8) may be used to find the deflection at x = a
hence substituting x = a in either of the equation we get
Yl =- Wa'h®
=a 3El{a +hb)
ORifa=b=L2
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ALTERNATE METHOD:

There is also an alternative way to attempt this problem in a more simpler way. Let usconsidering the

origin at the point of application of the load,

oE 0




o

2
W
E:.m|ﬂ = T[ﬁ_ }{]

substituting the value of Min the governing equation far the deflection

oy 3(7)

iy
_i'
IWL}{ wi |,
=1 _WL}{ _ Wi +4x +B
12

Boundary conditions relevant for this case are as follows

(i) at x=0; dy/dx=0

hence, A=0

(i) at x =1/2; y = 0 (because now | / 2 is on the left end or right end support since we havetaken

the origin at the centre)

Thus,
e wle
= R
32 96
s
45

Hence he egquation which governsthe deflection would be
1wl wed
Ell 8 12 48

I_IIII=

Hence

v _ Wl
maxm|at><=ﬂ - E

dy Wy 2
dx ax™

=+ — Atthe ends
Hence the integration method may be bit cumbersome in some of the case. Anotherlimitation of

At the centre

-

A=tz T IGEl

the method would be that if the beam is of non uniform cross section,

-
1

i.e. it is having different cross-section then this method also fails. Sothere
are other methods by which we find the deflection like
1. Macaulay's method in which we can write the different equation for bending

moment for different sections.




2. Area moment methods

MOMENT-AREA METHODS:

The area moment method is a semi graphical method of dealing with problems of deflection of
beams subjected to bending. The method is based on a geometrical interpretation of definite
integrals. This is applied to cases where the equation for bending moment to be written is
cumbersome and the loading is relatively simple.

Let us recall the figure, which we referred while deriving the differential equation governing the

beams.

N P -
| elastic curve
o8
|'.'I i B
1
e
A
I — iy — ol
vy

It may be noted that d  is an angle subtended by an arc element ds and M is the
bending moment to which this element is subjected.

We can assume,

ds = dx [since the curvature is small] hence,R d

=ds
d _ 1 _ M
ds R El
dfl _ M
ds Ei

But far small curvature[but Bis the angle slope is tan5=$ for small
X

2
anglestanl =B hence # = ﬂsn we getd—Elf = Ehy putting ds = dx]
dx dx  El
Hence,
df _ M _Mdxf
ﬁ—aﬂr.dﬁ— E] |:1:|




The relationship as described in equation (1) can be given a very simple graphical interpretation

with reference to the elastic plane of the beam and its bending moment diagram

tangents drawn at the
end of small element ds.

Deflection curve of

the beam ! >< Arc = Angle x radius
L we can lake the radius
] =R to be equal 16

/ JB' L= This Isalso within
Al - reasonable accuracy

N £

Bending Moment diagram ¢
of the beam subjected to —| M< [/ -
arbitrary type of loading &

A

-— N —— Bi
centroid

Refer to the figure shown above consider AB to be any portion of the elastic line of theloaded
beam and A:B4is its corresponding bending moment diagram.

Let AO = Tangent drawn at A BO

= Tangent drawn at B
Tangents at A and B intersects at the point O.
Futher, AA " is the deflection of A away from the tangent at B while the vertical distance B'B is the
deflection of point B away from the tangent at A. All these quantities are futher understood to be
very small.
Let ds = dx be any element of the elastic line at a distance x from B and an angle betweenat its

tangents be d . Then, as derived earlier

Ml
df= ——
El

This relationship may be interpreted as that this angle is nothing but the area M.dx of theshaded
bending moment diagram divided by EI.
From the above relationship the total angle between the tangents A and B may be

determined as

Bbdde 1B
g= "= [Mdx
i | E|£




Since this integral represents the total area of the bending moment diagram, hence we may
conclude this result in the following theorem

Theorem I;

{ slopeor@ . } _ ‘%xarea of B.M diagram between
DEBIEIER N B [FENE corresponding portionof B.Mdiagram
Now let us consider the deflection of point B relative to tangent at A, this is nothing but thevertical
distance BB'. It may be note from the bending diagram that bending of the element ds contributes
to this deflection by an amount equal to x d [each of this intercept may be considered as the arc
of a circle of radius x subtended by the angle ]

B

6=[ xd8

Hence the total distance B'B becomes A
The limits from A to B have been taken because A and B are the two points on the elastic curve,
under consideration]. Let us substitute the value of d = M dx / EIl as derived earlier

Mdx 5 hdx
— = b

b= [x -
El El

— o

A [ This is infact the moment of area of the bending moment

diagram]

Since M dx is the area of the shaded strip of the bending moment diagram
and x is its distance from B, we therefore conclude that right hand side of the above equation
represents first moment area with respect to B of the total bending moment area between A and B
divided by EI.
Therefore,we are in a position to state the above conclusion in the form of theorem as follows:
Theorem I
1 {ﬁrat rmoament of area with respect

=—= . .
Deflection of point ‘B' relative to point A El | topointB, of the total B.M d'agram} Futher,

the first moment of area, according to the definition of centroid may be

written as , wherefigtequal to distance of centroid and a is the total area of bending moment

Thus,




Therefore,the first moment of area may be obtained simply as a product of the total area of the
B.M diagram betweenthe points A and B multiplied by the distance to its centroid C. X

If there exists an inflection point or point of contreflexure for the elastic line of the
loaded beam between the points A and B, as shown below,

BM — || |4velch
A B,

Then, adequate precaution must be exercised in using the above theorem. In such a case
B. M diagram gets divide into two portions +ve and —ve portions with centroids Ciand C,.Then
to find an angle between the tangentsat the points A and B

B
a= Ihﬂdx de
D
a'-\nd similarly for the deflection of B away fromthe tangent at A becomes

g = .[Md}{' Md}{}{

Ilustrative Examples: Let us study few illustrative examples, pertaining to the use ofthese
theorems

Example 1:

1. A cantilever is subjected to a concentrated load at the free end.It is required to find outthe
deflection at the free end.

Fpr a cantilever beam, the bending moment diagram may be drawn as shown below




P
. il

N WL B.M.Diagram

Let us workout this problem from the zero slope condition and apply the first area -moment

theorem

slope at A:%[Area of B diagram between the paints A and B]
1
_ il
2El
The deflection at A (relative to B) may be obtained by applying the second area -moment

theorem
NOTE: In this case the point B is at zero slope.

Thus,
&= % [first moment of area of B.Mdiagram between A and B about A]

= g [49]

1 2
o Eee
Rk

~ 3EI
Example 2: Simply supported beam is subjected to a concentrated load at the mid spandetermine the value

of deflection.
A simply supported beam is subjected to a concentrated load W at point C. Thebending

moment diagram is drawn below the loaded beam.




B.M digram.

Again working relative to the zero slope at the centre C.

slope atﬂ-«—El Area of B.M diagrambetween A and C]
WL .
EI T we are taking half area of the B.Mbecause we
have to wark out thisrelative to a zero slope
_ il
16El

Deflection of A relative to C = central deflection of C

ar

1 Mnment of B.M diagram between points A and C about Al

L [[ (e

ABEI
Example 3: A simply supported beam is subjected to a uniformly distributed load, witha

intensity of loading W / length. It is required to determine the deflection.
The bending moment diagram is drawn, below the loaded beam, the value ofmaximum B.M is

equal to WI?/ 8
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So by area moment method,
Slope at paint Cw.r.t point A _El Area of B.Mdiagram between point A and C]

1959

Deflection at point C =_[AT]

relative to A

Macaulay's Methods

If the loading conditions change along the span of beam, there is corresponding change in
moment equation. This requires that a separate moment equation be written between each change
of load point and that two integration be made for each such moment equation. Evaluation of the
constants introduced by each integration can become very involved. Fortunately, these
complications can be avoided by writing single moment equation in such a way that it becomes

continuous for entire length of the beam in spite of the discontinuity of loading.




Note : In Macaulay's method some author's take the help of unit function approximation (i.e.
Laplace transform) in order to illustrate this method, however both are essentially thesame.

For example consider the beam shown in fig below:

Let us write the general moment equation using the definition M = ( Y. M ) , Which means that we
consider the effects of loads lying on the left of an exploratory section. The moment equations for
the portions AB,BC and CD are written as follows

| x

500N © 450 Mim
A E‘l “Yy ¥y vy v y°
.. ! e Mg = 480 x M.
B 2m J dm | 2m S
Ry =480N O Fo= 920N Mye = [480 x-500(x-2)]M.m
. | x Mep = [480x—5uu(x—2)—@(x—3f]r~4.m

It may be observed that the equation for Mcp will also be valid for both Mag and Mgc provided that
the terms ( x - 2) and ( x - 3 )are neglected for values of x less than 2 m and 3 m, respectively. In
other words, the terms ( x - 2) and ( x - 3 )? are nonexistent for values of x for which the terms in

parentheses are negative.

¥
' 500 N 450 Nim
A E‘l Cl ¥ rl ¥ yD
i ¥
3 Zm JooIm Zm
Ry = 480 N Ra=920 N

As an clear indication of these restrictions,one may use a nomenclature in which the usual form
of parentheses is replaced by pointed brackets, namely, < ». With this change in nomenclature, we

obtain a single moment equation

h-'1={ABD}{—EDD(}{—EJ—?[H—3)2]N.m




Which is valid for the entire beam if we postulate that the terms between the pointed brackets do
not exists for negative values; otherwise the term is to be treated like any ordinary expression.

As an another example, consider the beam as shown in the fig below. Here the distributed load
extends only over the segment BC. We can create continuity, however, by assuming that the
distributed load extends beyond C and adding an equal upward- distributed load to cancel its effect
beyond C, as shown in the adjacent fig below. The general moment equation, written for the last

segment DE in the new nomenclature may be written as:

D0 N B0 M
A Bllllrilc ] E

Ri=G00MN R:=1300N
{a} 500 W
A0 M

L

|| TR
A El\H —qurvhptv'!E
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- ol |11 (|

im Im ZI'I'ITEI'H

Ry =5&00MN

Rz =1300M

M = [EEIEI}{ -?(}Hf +‘12_D|;x—4f +13EID[}{—E:|]N.m

It may be noted that in this equation effect of load 600 N won't appear since it is just at thelast end
of the beam so if we assume the exploratary just at section at just the point of application of 600 N
than x = 0 or else we will here take the X - section beyond 600 N which is invalid.
Procedure to solve the problems

(). After writing down the moment equation which is valid for all values of ‘x' i.e. containing
pointed brackets, integrate the moment equation like an ordinary equation.

(ii). While applying the B.C's keep in mind the necessary changes to be made regarding the
pointed brackets.

llustrative Examples :




1. A concentrated load of 300 N is applied to the simply supported beam as shown in
Fig.Determine the equations of the elastic curve between each change of load point and the

maximum deflection in the beam.

|.,|
00N
I3 2m B im C

K- __ J ¢ B - A X
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Ri=100N Ry =200 N

Solution : writing the general moment equation for the last portion BC of the loadedbeam,

2
EI%=M=(1DD}{—SDD{}{—2}]N.m S | !
X
Integrating twice the abaove equation to obtain slope and the deflection
EI% = [50:® -180 (- 2} + CyJNm? 2)

Ely =[?}{3 - 50 {x - 2% +r:1x+r:2]r~1m3 )

To evaluate the two constants of integration. Let us apply the following boundaryconditions:

1. At point A where x = 0, the value of deflection y = 0. Substituting these valuesin Eq.
(3) we find C2 = 0.keep in mind that< x -2 >3 is to be neglected for negative values.

2. At the other support where x = 3m, the value of deflection y is also zero.

substituting these values in the deflection Eqg. (3), we obtain
0= [53_%3 -50(3-2)° +3.C1]Dr C,=-133N.m"

Having determined the constants of integration, let us make use of Eqgs. (2) and (3) torewrite the

slope and deflection equations in the conventional form for the two portions.




segment AB (0 £ x £ 2m)
EIS—i=(5D}{2—133)N.m2 ()
Ely = [%}{3 —133}{]N.m3 ....... (5
segment BC (Zm=< x £ 3m)
E|§—i = (50 ~150(x - 2)" -133x]Nm . (B)
Ely = [?}{3 -50(x-2)° —133}{]N.m3 (T
Continuing the solution, we assume that the maximum deflection will occur in the segment AB.
Its location may be found by differentiating Eq. (5) with respect to x and setting the derivative to
be equal to zero, or, what amounts to the same thing, setting the slope equation (4) equal to zero
and solving for the point of zero slope.
We obtain
50 x>~ 133 = 0 or x = 1.63 m (It may be kept in mind that if the solution of the equationdoes
not yield a value < 2 m then we have to try the other equations which are valid for segment BC)
Since this value of x is valid for segment AB, our assumption that the maximum deflection occurs
in this region is correct. Hence, to determine the maximum deflection, we substitute x = 1.63 m in
Eq (5), which yields
Ely |pgem = ~148Nm* (8]
The negative value obtained indicates that the deflection y is downward from the x axis.quite
usually only the magnitude of the deflection, without regard to sign, is desired; this is denoted by ,
the use of y may be reserved to indicate a directed value of deflection.
if E=30Gpaand | =1.9x10° mm*=1.9 x10 ®*m*, Eq. (h) becomes
¥ |paem = [30:10% {1 9x10°°)

Then = -2 5dmm
Example 2:
It is required to determine the value of Ely at the position midway between thesupports

and at the overhanging end for the beam shown in figure below.




¥ | - 600N

Ri=000 M Rz = 1300 N

Solution:
Writing down the moment equation which is valid for the entire span of the beam and applying the
differential equation of the elastic curve, and integrating it twice, we obtain

2z
B8 = b= {5005 - 200 1)+ 208 1 32 4300 - B) |Nim
dx 2 2
BY - f2m0 -2 -1+ 22 -4y v BED (- B)F + ¢, N
dx 3 3
(280 5 50, .4 50, 4 BS0, oo . ]
Ely [Tx = (x-1) = (x-4] = (% -8)" +Cyx CE]N.m

To determine the value of C,, It may be noted that Ely = 0 at x = O,which gives C> = 0.Note that
the negative terms in the pointed brackets are to be ignored Next,let us usethe condition that Ely
= 0 at the right support where x = 6m.This gives

a0
+ =
3

250
3

L (B)° -53—':'(5)4 (2)* + BCy or C, = -1308Mm?

Finally, to obtain the midspan deflection, let us substitute the value of x = 3m in the deflection
equation for the segment BC obtained by ignoring negative values of the bracketed terms x - 4 4

and x - 6 3. We obtain

Ely = ESE@;F —?(2)4 - 1308(3) = -1941 N.m®

For the overhanging end where =8 m we have
| 260,...2 50 .4 50,4 BA0O, .2
Ely = [T[Bj (1) () s == (2) —1308(8)]
= -1814Mm*
Example 3:
A simply supported beam carries the triangularly distributed load as shown in figure. Determine

the deflection equation and the value of the maximum deflection.




Solution:

Due to symmetry, the reactionsis one half the total load of 1/2woL, or R1 = R2 = 1/4wgL.Due to
the advantage of symmetry to the deflection curve from A to B is the mirror image of that from C
to B. The condition of zero deflection at A and of zero slope at B do not require the use of a
general moment equation. Only the moment equation for segment AB is needed, and this may be
easily written with the aid of figure(b).

Taking into account the differential equation of the elastic curve for the segment AB and

integrating twice, one can obtain

d* wol  owe
El—L=pg,, =0-y- 0% 2 i
d P 4 L 3 ()
i wolx®  wgut
El—i =S - Sh G (2)
w Lx®
Ely = ”24 - E‘EL +C+ Gy (3)

In order to evaluate the constants of integration,let us apply the B.C'swe note that at the support A,
y = 0 at x = 0.Hence from equation (3), we get C> = 0. Also,because of symmetry, the slope dy/dx

= 0 at midspan where x = L/2.Substituting these conditions in equation (2) we get

2 4
0= W_I:J_[E] - W_D[E] + I:1|:1 = —EWDLS

g L2 12002 192

Hence the deflection equation from A to B (and also from C to B because of symmetry) becomes




i wpL® _ g _ Swrgl x
24 BOL 192
Whichreducesto

_ WX

Ely

Ely = (25L4 - 4077 + 15}{4)
oL
The maximum deflection at midspanwhere x = L2 isthen found to be
WI:IL4
Ely = -
D

Example 4: couple acting
Consider a simply supported beam which is subjected to a couple M at adistance ‘a' fromthe left

end. It is required to determine using the Macauley's method.

a -
Ri=M4g L
LT -

To deal with couples, only thing to remember is that within the pointed brackets we haveto take
some quantity and this should be raised to the power zero.i.e. M x-a °. We have taken the
power 0 (zero) ' because ultimately the term M x - a °Should have the moment units.Thus

with integration the quantity x - a becomes either x - a

lor  x-a 2
Or
&M
Al | | B
AN T
m__a b o
L

i
L

Therefore, writing the general moment equation we get

iy
M= Ryx-M{x-a} or El— = M
dx
Integrating twice we get
dy e i
El—2=F, —-M{x-a} +C
R R { } 1

}{3

El}" = RxlE_

S =

{}{—a}z +Cix + G




Example 5:
A simply supported beam is subjected to U.d.l in combination with couple M. It isrequired

to determine the deflection.

200Mfm
M=1800 M-m
=  AARIEARARAL
[ + ]
e, -+ i
=] Rz

This problem may be attemped in the some way. The general moment equation my bewritten
as
o 200{x-4%x -4}

MOx) = Ryx - 1800 {x -2 - > +R, {x - B
2
-Ryx-1800¢x -2 - 2200 vgy
Thus,
dy o 200{x-4Y
Bl = Ry - 1800 - 2)° - =L+ R, (x-B)

Integrate twice to get the deflection of the loaded beam.




CHAPTER-5:-COLUMNS AND STRUTS

Introduction:

Structural members which carry compressive loads may be divided into two broad
categories depending on their relative lengths and cross-sectional dimensions.
Columns:
Short, thick members are generally termed columns and these usually fail bycrushing when
the yield stress of the material in compression is exceeded.
Struts:
Long, slender columns are generally termed as struts, they fail by buckling some time before the
yield stress in compression is reached. The buckling occurs owing to one the following reasons.
(a). the strut may not be perfectly straight initially.
(b). the load may not be applied exactly along the axis of the Strut.
(c). one part of the material may yield in compression more readily than others owing to some lack
of uniformity in the material properties through out the strut.
In all the problems considered so far we have assumed that the deformation to be both progressive
with increasing load and simple in form i.e. we assumed that a member in simple tension or
compression becomes progressively longer or shorter but remains straight. Under some
circumstances however, our assumptions of progressive and simple deformation may no longer
hold good and the member become unstable. The term strut and column are widely used, often
interchangeably in the context of buckling of slender members.]
At values of load below the buckling load a strut will be in stable equilibrium where the
displacement caused by any lateral disturbance will be totally recovered when the disturbance is
removed. At the buckling load the strut is said to be in a state of neutral equilibrium, and
theoretically it should than be possible to gently deflect the strut into a simple sine wave provided
that the amplitude of wave is kept small.
Theoretically, it is possible for struts to achieve a condition of unstable equilibrium with loads
exceeding the buckling load, any slight lateral disturbance then causing failure by buckling, this
condition is never achieved in practice under static load conditions. Bucklingoccurs immediately at

the point where the buckling load is reached, owing to the reasons stated earlier.




The resistance of any member to bending is determined by its flexural rigidity El and isThe
quantity 1 may be written as | = Ak?,

Where | = area of moment of inertia A =

area of the cross-section

k = radius of gyration.

The load per unit area which the member can withstand is therefore related to k. Therewill be

two principal moments of inertia, if the least of these is taken then the ratio

[ length of member
k least radius of gyration

Is called the slenderness ratio. It's numerical value indicates whether the member fallsinto the
class of columns or struts.

Euler's Theory : The struts which fail by buckling can be analyzed by Euler's theory. Inthe
following sections, different cases of the struts have been analyzed.

Case A: Strut with pinned ends:

Consider an axially loaded strut, shown below, and is subjected to an axial load ‘P' thisload ‘P’
produces a deflection ‘y' at a distance ‘x' from one end.

Assume that the ends are either pin jointed or rounded so that there is no moment ateither end.

Assumption:

The strut is assumed to be initially straight, the end load being applied axiallythrough

T ——>

+B.M

r ‘
: - B.M :

According o sign
comvention

centroid.




B. M|, = -Py
Futher we know that
2

1LY
dx
d2

El 2y -py= M
i !

In this equation ‘M’ is not a function ‘x'. Therefore this equation can not be integrateddirectly

as has been done in the case of deflection of beams by integration method.

Thus,
dz'_-,-'
i

Though this equation is in ‘y' but we can't say at this stage where the deflectionwould be

El

+ Py =0

maximum or minimum.

So the above differential equation can be arranged in the following

dzl-l'r + ﬂ = [
form d}{z El

Let us define a operator D = d/dx
(D? + n?) y =0 where n? = P/EI

This is a second order differential equation which has a solution of the form consisting of
complimentary function and particular integral but for the time being we are interested in the
complementary solution only[in this P.I = 0; since the R.H.S of Diff. equation = 0]

Thus y = A cos (nx) + B sin (nx) Where A

and B are some constants.
y=Acns,\(E}{ + Eisin,JEx
El El

In order to evaluate the constants A and B let us apply the boundary conditions,(i)at x = 0;

Therefore

y=0
(i) atx=L;y=0
Applying the first boundary condition yields A = 0.

Applying the second boundary condition gives




Besin LJE =0
El
. . F
ThuseitherB =0,ar sin| L =

if B=0 that yO for all values of x hence the strut has not buckled yet. Therefore the solution required is

; F1_ ||F' _ _
sm[L E]_D nr[L E]—HnrnL =7
[P _ = _ El
or, ) — = = or P=—
El L L?

From the above relationship the least value of P which will cause the strut to buckle, andit is

a

called the ““ Euler Crippling Load ” Pefrom which w obtain.

P - ;-?E|
L

It may be noted that the value of | used in this expression is the least moment of inertia

It should be noted that the other solutions exists for the equation

Sir IJE =0 i.e. sin nL=0
El

The interpretation of the above analysis is that for all the values of the load P, other than those

which make sin nL = 0; the strut will remain perfectly straight since

y=BsinnL=0
For the particular value of
7El
T

sinnk =0 ornL=a

Therefare n =2
L
Hence y= B sin nx=B sin %

Then we say that the strut is in a state of neutral equilibrium, and theoretically any deflection
which it suffers will be maintained. This is subjected to the limitation that ‘L' remains sensibly
constant and in practice slight increase in load at the critical value will cause the deflection to
increase appreciably until the material fails by yielding.

Further it should be noted that the deflection is not proportional to load, and this applies toall strut
problems; likewise it will be found that the maximum stress is not proportional to load.

The solution chosen of nL is just one particular solution; the solutions nL= 2 , 3 , 5etc are

equally valid mathematically and they do, infact, produce values of




‘Pe' which are equally valid for modes of buckling of strut different from that of a simple bow.
Theoretically therefore, there are an infinite number of values of Pe , each corresponding with a
different mode of buckling.

The value selected above is so called the fundamental mode value and is the lowest critical load

producing the single bow buckling condition.
The solution nL = 2 produces buckling in two half — waves, 3 in three half-waves etc.

Pi= :"H/r P:=gpP
I I
nb=x nk =2z nL =3z
Fundamentat Mode Second harmonio Third harmonic
(First harmonic) (mid point bracing) (Third point bracing)
L= =7 or B = =
El L

I LJE_= 2mor R =@=dF‘1
El |2

P 97 El
|f LJET: 3:'?|:|r F‘g =L—2=9P1

If load is applied sufficiently quickly to the strut, then it is possible to pass through the
fundamental mode and to achieve at least one of the other modes which are theoretically possible.
In practical loading situations, however, this is rarely achieved since the high stress associated with

the first critical condition generally ensures immediate collapse.




r n lumns with other en nditions:
Let us consider the struts and columns having different end conditions
Case b: One end fixed and the other free:

| ko Orgin

—
i
s s

writing down the value of bending moment at the point C

B.M| = Pla-y)
Hence, the differential equation becomes,
dz'_-,-'
El —L = Fla -
oE: ( )

Cn rearranging we get
iy . Py  Pa

dxf  El El
P_ 2
Let — =
=] El M

Hence in operator form, the differential equation reduces to ( D? + n?) y = n?a

The solution of the above equation would consist of complementary solution andparticular
solution, therefore

Ygen = A cos(nx) + sin(nx) + P. |

where

P.I =the P.l is a particular value of y which satisfies the differential equationHence
Yri=a4a

Therefore the complete solution becomes Y =A

cos(nx) + B sin(nx) + a

Now imposing the boundary conditions to evaluate the constants A and B

(i) atx=0;y=0 This

yields A =-a

(i) at x = 0; dy/dx = 0 This

yields B = 0 Hence




y = acos(nx) + a Futher, atx =
L;y=a
Therefore a = - a cos(nx) + a or 0 = cos(nL)

Now the fundamental mode of buckling in this case would be

nL=E
2
P, _= L o
g L= 5,Therefn:nre,the Euler's crippling load is given as
_ 7El
TE:

Case 3
Strut with fixed ends:

3 M

e

[
C

o .-".-:- &

L 3
e

Due to the fixed end supports bending moment would also appears at the supports,since this is
the property of the support.
Bending Moment at point C=M —P.y




di

El— =M-F
dx’ !

Drdz_l'llll+E: E
dxf El El

ne o= %,Thereﬁ:re inthe operatar fram, the equation reduces to

2, 2y, - M
(0% +n )F‘g
'.'l"geneml = '.'I"c-:-mplememar!.r + '.'I"parti-::.llarintegml
oMM
i Z =5 T B

Hence the general solution wauld be
y = B Cosnx + A Sinnx +g

Boundry conditions relevant to this case are at x=0:y=0

i
B E R —

Fl

_n 4y
Also at x=0,— =0 hence
dx

A0
Therefare,
¥ = - g Cos nx +g

i
=_— [1- Cosnx
y== | )
Futheritmaybenotedthatat x =L,y =0
Then( = g (1- Cosnl)

Thus,e'rtherg = or {1- Cosnl)=0

obviously [1- Cosnl) =0
cosnl =1

Hencethe least solutionwouldbe
nL =2m

\(g L==2mr Thusthe buckling load or crippling load is

B - 47 El
e = 2
Thus, L




Case 4

ne end fix he other pinn

In order to maintain the pin-joint on the horizontal axis of the unloaded strut, it is necessary in this
case to introduce a vertical load F at the pin. The moment of F about the built in end then balances
the fixing moment.

With the origin at the built in end, the B,M at C is given as

di
Bl =Py + F(L-x)
3

YePy = F(L-%)

d
El—

%
Hence
dy P _F

o "'EY :E[L_H:I

In the operatar form the equation reduces to

(Dz +n2) y = %[L— ]

F
l-'lllparti-::l.llar = ﬁﬂ—_ }{) or ¥ =

(L-%)

| m

Thefull solution is therefare
: F
= AL BS —[L-
iy 08 my + |nn}{+P[ %)

The boundry conditions relevants to the problem are at :=0;y=0

FL
Hence A = -—
ENCE B

Alsoat x =I:I;d—3'f= 0
dx

Hence B = i
hP

ary = —ECDS nx + iSin (s +E|:L— )
P nP P

¥ = %[Sin ni - nLCosnx + nfL- xj]
Also when x =L ; y =0 Therefore
nL CosnL =SinnL ortannL =nL
The lowest value of nL ( neglecting zero) which satisfies this condition and whichtherefore

produces the fundamental buckling condition is nL = 4.49radian
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Equivalent Strut Length:
Having derived the results for the buckling load of a strut with pinned ends the Euler loads for

other end conditions may all be written in the same form.

e ?FEI

Where L is the equivalent length of the strut and can be related to the actual length of the strut
depending on the end conditions.

The equivalent length is found to be the length of a simple bow(half sine wave) in each of the strut
deflection curves shown. The buckling load for each end condition shown is then readily obtained.
The use of equivalent length is not restricted to the Euler's theory and it will be used in other
derivations later.

The critical load for columns with other end conditions can be expressed in terms of the critical
load for a hinged column, which is taken as a fundamental case.

For case(c) see the figure, the column or strut has inflection points at quarter points of its
unsupported length. Since the bending moment is zero at a point of inflection, the freebody
diagram would indicates that the middle half of the fixed ended is equivalent to ahinged column
having an effective length Le= L / 2.

The four different cases which we have considered so far are:

A. Both ends pinned C .One end fixed, other free

B. Both ends fixed D. One end fixed and other pinned
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Limitations of Euler's Theory :

In practice the ideal conditions are never [ i.e. the strut is initially straight and the end load being
applied axially through centroid] reached. There is always some eccentricity and initial curvature
present. These factors needs to be accommodated in the required formula’s.

It is realized that, due to the above mentioned imperfections the strut will suffer a deflection which
increases with load and consequently a bending moment is introduced which causes failure before
the Euler's load is reached. Infact failure is by stress rather than by buckling and the deviation from
the Euler value is more marked as the slenderness-ratio I/k is reduced. For values of I/k < 120
approx, the error in applying the Euler theory is too great to allow of its use. The stress to cause

buckling from the Euler formula for the pin ended strut is




P, _7El

Euler'sstress, o, = = = —
A A

But, | = Ak

A plot of ¢versus |/ kratio is shown by the curve ABC.

A

—— Euler's curve
T / e
For struciural steel,
stress A cunves concide at Ik = 80

aurves colnciae
%vg athk= 120
or
GCc

expermental
cusves

50 100 180 )k
short  intermediate  — long column

Allowing for the imperfections of loading and strut, actual values at failure must lie within and
below line CBD.
Other formulae have therefore been derived to attempt to obtain closer agreement between the
actual failing load and the predicted value in this particular range of slenderness ratio i.e.l/k=40 to
I/k=100.

(@) Straight — line formula :

The permissible load is given by the formulae

F=aA [1 = n[)l?/ll
re the value of index ‘n' depends on the material used and the

end conditions.

(b) Johnson parabolic formula: The Johnson parabolic formulae is defined as
[ 2z
P=g,A ’I—h[E] l
where the value of index ‘b' depends on the end conditions.
(©) Rankine Gordon Formula:
1. 1,1
PR Pe Pc

Where Pe= Euler crippling load




Pc = Crushing load or Yield point load in Compression Pr =
Actual load to cause failure or Rankine load

Since the Rankine formulae is a combination of the Euler and crushing load for astrut.

1 1 1

— = + —

PR E Pc

For a very short strut Pe is very large hence 1/ P ewould be large so that 1/ P <can beneglected.
Thus Pr = P, for very large struts, P ¢ is very small so 1/ P ¢ would be large and 1/ P

«can be neglected ,hence Pr = Pe

The Rankine formulae is therefore valid for extreme values of 1/k.It is also found to be fairly
accurate for the intermediate values in the range under consideration. Thus rewritingthe formula in

terms of stresses, we have

1 1 1
= +
N

1 1 1
- = + —

g o, 0,

1 d.+0y
g 0,0,

J,.0 a

g=_®"¥ - _ v

o, +0 T

mE

Where and the value of ‘a' is found by conducting experiments on various materials. Theoretically,
but having a value normally found by experiment for various materials. This will take into account

other types of end conditions.
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