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CHAPTER -1

DETERMINANT

INTRODUCTION :

The study of determinants was started by Leibnitz in the concluding portion of seventeenth
century. This was latter developed by many mathematician like Cramer, Lagrange, Laplace, Cauchy,
Jocobi. Now the determinants are used to study some of aspects of matrices.

Determinant : If the linear equations

alx+b; =0

and a2x + b2 =0

have the same solution, then al a2
oraib—a2b; =0
The expression (a1bz —a 2b) is called a determinant and is denoted by symbol.

ay b

or by (a1b2) where aj, a2, by & by are called the elements of the determinant. The elements

in the horizontal direction from rows, and those in the vertical direction form columns. The determinant

a1 by 37 3 .
has two rows and two coloums. So it is called a determinant of the second order and it has 2!

az b2
= 2 terms in its expansion of which one is positive and other is negative. The diagonal term, or the
leading term of the determinant is a;bz whose sign is positive.

Again if the linear equations

aix+biy+c¢c1 =0 v (1)

AX+Yy+2=0...cccrniriiurenn (ii)

asx +bay+¢c3=0 ...cccceiiinnenns (1i1)

have the same solutions, we have from the last two equations by cross-multiplication.
X " y _ 1

b2c3=b3c2 cra3-c3a 8 bs—a_qbz

orx=1263-b3¢) y=©a3-c3m

ayb3-az bz a2bz—az3 b
These values of x and y must satisfy the first equation. Hence aj(bacz — b 3¢2) + by (c2a3 — ¢ 3a2) + ¢ (axbs
—a3by)
or ajbacs —a 1bscz + az bica — a abics + azbscy —a 3bacy is denoted by the symbol

aibicra
a
%)b 2C2 3 | or by (a1b2c3) and has three rows, and three columns. So it is called a determinant of
C
3 3

the third order and it has 3! = 6 terms of which three terms are positive, and three terms are negative.




MINORS

Minors : The determinant obtained by suppressing the row and the column in which a particular
element occurs is called the minor of that element.

a] by ¢
Therefore, in the determinant [a2 b2 ¢
a3 b3 c¢

a ¢ ab

1 1
ab
2 2

The minor of any element in a third order determinant is thus a second order determinant.

b ¢
2
b c

and so on.

1 I
a_  c_| and that of c3 is

3

the minor of a; is , that of by 1s

The minors of aj, by, c1, az, ba, 2, a3, b3, c3 are denoted by A|, By, Ci1, A2, B2, C2, A3z, B3, C3 respectively.

b ¢ ‘ b ¢ b ¢
a 2 2 qA2: | | -A3:
Hence Aj bs c3 b3cs b &
axco aj c] a] ¢
B| = B2 = , B3=
a3 c3 a3z c3 ajz e
az b2 ar by aj] by
Ci= ab o= a‘ b,; ‘ ,C3= ! b

If D stands for the value of the determinant, then

D=ajA; —b B) +ci1Ci = ajA] —a2A72 +a3A3

Cofactors : The cofactor of any element in a determinant is its coefficient in the expansion of the determinant.
It is therefore equal to the corresponding minor with a proper sign.
For calculation of the proper sign to be attached to the minor of the element, one has to consider (-1)
" and to multiply this sign with the minor of the element aj; where i and j are respecively the row and
the column to which the element ajj belongs.

Thus Cjj = (-1) ] M;; Where Cjj and M;; are respectively the cofactor and the minor of the element aj;.
The cofactor of any element is generally denoted by the corresponding capital letter.

a] b1 ¢
a‘) b" C’ ~
Thus for the determinant D = - = “ |, cofactor of aj is
a3z b3 c3
by ¢
= * . c2 a2
A= ,thatofbiis Bi=(=1) "?|ay o2 |=-dax o |= = ’
b3 ¢3 a ¢ a ¢ c. a
3 3 3 3
- a2 b2
thatofcjisC) =
a3 b3

(The sign is (1) ¥ = 1), and so on.
We see that minors and cofactors are either equal of differ in sign only.
With this notation the determinant may be expanded in the form,

a2 b2
a b

3 3

(8]
o

azc
+Cl
ajzc

L

(98}




=aijA; + b1B; +¢1C

Similarly we express = a2A2 + b2Ba + c2C2

=a3A3 + b3B3 + ¢3C3

By expanding with respect to the elements of the first column, we can write

aljbijicra b
2€2
_ 2ba2crajz|=aj e, ‘ a b ¢y ‘+a‘; br ¢
3C3 - £ =
b5 bz c3 by ¢

= a1A| + a2A2 + a3A3 Similarly

=b1B1 + b2B2 + b3B3

=¢1C1 + 2C2 + ¢3C3

Thus the determinant can be expressed as the sum of the product of the elements of any row (or column)
and the corresponding cofactors of the respective elements of the same row (or column).

PROPERTIES OF DETERMINANT

L The value of a determinant is unchanged if the rows are written as columns and columns as rows.

ab
If the rows and coloums are interchanged in the determinant of 2nd order ; b ' | , the determinant
a2 b2
becoems | 1 ¥
“|b1 b2

Each of the two = ajb2 —a 2b;

:{ da] a2
by b2

In the third order determinant

a] by =ajbp-axby

a b

a; by «
A=]|a, b c

a b c
3 3 3

if the rows and column are interchanged, it

ajajzasj
becomes | P 102b3¢ =D (say)
1C2C3

If D is expanded by taking the constituents of the first column and D' is expanded by taking the
constituents of the first row, then

b7 C b ¢ b ¢
A=aily & |~a b | pas] 1
s 5 b b ¢
3 3 2 2
by b3 b b3
and A'=aj -a +a3 by b2
Cc3 €l C3 c] ¢

\ D = D' (since the value of determinant of 2nd orders is unchanged if rows and columns are interchanged).

II.  If two adjacent rows and columns of the determinant are interchanged the sign of the determinant is
changed but its absolute value remains unaltered.




a b C a b’ c

1 114 A z ’

LetA= s B 33 ,A=la1 b1 o
b ¢ ’ a b 3

3 3

w

D' has been obtained by interchanging the first and second rows of D
Expanding each determinant by the constituents of the first column.

2 €2 b1 ¢ br ci
A=aj - a2 + a3
363 b3 c3 b2 ¢
, by ci b2 ¢ by ¢
andD' a —-aj +a3
= 2 b C b C
3 3 3 3 1 '
.| b2 2 b1 ¢y by ¢
=R +an —a3
b3 ¢3 b3 3 b2 ¢
L bs ¢ br ¢
Main ce tbacr-c2by and 5 thic2-b.4P=-A
2 ©
b1 c¢i
In this way it can be proved that only the sign changes if any other two adjacent rows or columns are
interchanged.

III. If two rows or columns of a determinant are identical, the determinant vanishes.

a] aj] c
Let A =la 222 @
azajz c3
The first two columns in the determinant are identical. If the first and second columns are

interchanged, then the resulting determinant becomes — D> by II. But since these two columns are
identical, the determinant remains unaltered by the interchange.

\Dz2=-Daor, 2D, =0
\D2=0

IV. If each constitutent in any row or any column is multiplied by the same factor, then the determinant is
multiplied by that factor.

a; b a
a b (
Let D= | 2 2 2
a3 b3 ¢

The determinant obtained when the constituents of the first row are multiplied by m is
maibic
i 3
na 2 b 22 = le|A| —ma 2A2 + m'd_qu
ma3b3c3
=m [a1A] —a 2A2 + a3A3] = mD
V.  If each constituent in any row or column consists of two or more terms, then the determinant can be
expressed as the sum of two or more than two other determinants in the determinant.

a b ¢
1 1 1

In the determinant |22 P2 €

as3i b3 Cc3




Leta;=t;+my +nj,a2=1t2+ m+n2, a3 =13+ m3 +n3
Then the given determinant
tiy+m+n; b ¢
C
ta2+m2+n?2 2 2

t3+m3+n3y b3 c3

=(tr +my +np) Ay — (t 2+ me+ m2) A2 + (13 + m3 + n3) A3
= (tjA] —t 2A2 + t3A3) + (M A] —m 2A2 + m3A3) + (NjA] —n 2A% + n3A3)

t;p by cj m; b ¢ ny bi ¢

=sts2 ba c2|+4 m2 b c2|t b2

= B
[SSI ]

t3 b3 ¢3 m3 b3 c3 b3 c3

w

It can be similarly proved that

o a b c a ¢ s

ai+pi 1+q1 1 | £ | q| I pl bl Clp p1 ql |
=|az2+p2 b2+q2 c2|7| ay bac2|T| a2 qzc2|T|5bscap; || P2 q2c2
a3+p3 bi3+q3 c3 a3 b3cs a3 q3c¢3 b3c3 pP3 q3c¢3

VI. If the constituents of any row (or column) be increased or decreased by any equimultiples of the
corresponding constituents of one or more of the other rows (or columns) the value of the determinant
remains unaltered.

ap] by a
Let D=|2a, b ¢

a3 b'g ic3

The determinant obtained, when the constituents of first column are increased by / times the second
column m times the corresponding constituents of the third column is

aj+lbi+mc) b ¢ aijbijcra bibjcylb mcy b 1 ¢
a2 +by+mey 2 2|=[2b2czaz| t|2b2calb3 |+ me 2b 2 ey [(byV)
a3+lb3+me3 b3 c3| |b3cs b3c3 mc 3b 3¢3
ay b1 cp|b1] b1 c+l CIbICI
= az b: C: b2l b2 cgb+mczb2w(byl‘/)
a3 b3 ¢3 : bl C} C_x bs C_z
a1 b1 ¢
—| ez b2 e =A
a3 b3 ¢3

SOLUTIONS OF SIMULTANEOUS LINEAR

EQUATIONS Cramer's Rule :
A method is given below for solving three simultaneous linear equations in three unknowns. This
method may also be applied to solve ‘n’ equations in ‘n’ unknowns.
Consider the system of equations.




arx+byry+ciz=d U
arx+bay+caz=d 2V o)
a3x+bsy+csz=d w

Where the coefficients are real.
The coefficient of x, y, z as noted in equations (1) may be used to form the determinant.

a1 b1 «a
A=laz by &
a3 b3 ¢c3
Which is called the determinant of the system.

A A A
If D ' 0, the solution of (1) is givenby x = —A!, y= A=z="A3, where Arir=1,2, 3is the

determinant obtained from D by replacing the ™ column by di, d2, ds3.

5 -2 1
Example —1 : Find the value of 30 2
8§ 1 3

Solution : The value of the given determinant

0 2 3 2 3 0
=5 - +1
1 3 8 3 8 1
=5(0-2)-2(9-16)+1(3-0)
=-10+14+3=7
2 3
a a a

b b b
Example — 2. Prove that =abc(a-b)(b-c)(c—a)

¢ & ¢
2 3
a®
Solution: L.H.S. |b b b’
C C2 C3
1 a a’
2
=abc |1 b b (Taking a, b, c, from R1, R2, R3)
1 ¢ ¢?

0a-b a’> —b?
=abc [0 b-c b® —c? |, replacing Ry byRj —Rand R by Ry —R 3)

By

1 cc”
01 a+b
=abc(a-b)(b-c) (l) 1°b+c (Taking (a—b) & (b—c¢)
€c~

common from R} & R2 respectively)




o

Il a+b
I b+c

=abc(a—b)(b—-c¢) ’ =abc(a—b)(b—c)(c—a)

Assignment

1 2 1

Find minors & cofactors of the determinants 213
1 4 2

b+c a a
Prove that b c+a b = dabe
(o] c a+b
Prove that
Il+a 1 | e |Gl
l l " b I 111 1444

1 1 l+c =2¢H b K

rr




MATRIX

MATRIX AND ITS ORDER

INTRODUCTION :

In modern engineering mathematics matrix theory is used in various areas. It has special
relationship with systems of linear equations which occour in many engineering processes.

A matrix is a reactangular array of numbers arranged in rows (horizontal lines) and columns
(verti-cal lines). If there are ‘m’ rows and ‘n” Column’s in a matrix, it is called an ‘m” by ‘n’ matrix or
a matrix of order m x n. The first letter in mxn denotes the number of rows and the second letter ‘n’
denotes the number of columns. Generally the capital letters of the alphabet are used to denote
matrices and the actual matrix is enclosed in parantheses.

L a a a
a1 12 13 —— I
" a a P
M 2, 22 23 -—— 3, P
M. a a ——a p
Hence A= 3 ) 3 3 P
M P
M P
Na a a a
ml m2 m3 e il

is a matrix of order m x n and ‘a’ j; denotes the element in the ith row and jth column. For example a»3
is the element in the 2™ row and third column. Thus the matrix ‘A’ may be written as (a jj) where i
takes values from 1 to m to represent row and j takes values from | to n to represent column.

If m = n, the matrix A is called a square matrix of order n x n (or simply n). Thus

Lﬂ]l alZ —— a.ln

0
M a a P
M=, 22 S g 2n -]
M a a
a3| K> - 3 p
A=M P
M -— 5
M b
a - a a a a
N LA ———"ilan 1 12w In
a a
21 22 — 2n
: . : a a a
is a square matrix of order n. The determinant of ordern, | s = —— 3n
a a
nl n2 —— —=—ann
which is associated with the matrix ‘A’ is called the determinant of the matrix and is denoted by det A

or |Al.
TYPES OF MATRICES WITH EXAMPLES

(a) Row Matrix : A matrix of order 1 x n is called a row matrix. For example (1 2), (a b ¢) are row
matrices of order 1 x 2 and 1 x 3 respectively.




(b) Column Matrix : A matrix of order m x 1 is called a column matrix. The matrices

(o)

(d)

(e)

L.O
.M P are column
N:Q

zgzz_l—
O:U_U'Uo

matrices of order 3 x 1 and 2 x 1 respectively.
Zero matrix : If all the elements of a matrix are zero it is called the zero matrix, (or null matrix) denoted

L F I
HO {00

by (0). The zero matrix may be of any order. Thus (0), (0, 0), G OJ .G 0 OJ are all zero matrices.
Unit Matrix : The square matrix whose elements on its main diagonal (left top to right bottom) are 1's and
rest of its elements are 0's is called unit matrix. It is denoted by I and it may be of any order. Thus (1)

F I
3 I G 1o ()_I
« 10 ’J
J G() ] are unit matrices of order 1, 2, 3 respectively.
0 1

0 01
Singular and non -singular matrices : A square matrix A is said to be singular if and only if its
determinant is zero and is said to be non-singular (or regular) if det A1 0.

Fi 2l
G J
For example is a non singular matrix. H K
4“2 3
. , M =
For ‘ =4-6=-2 0 and M3 sP is a singular matrix
N ‘Q
1 2 3
ie. 345 =0
5 6 7

Adjoint of a Matrix :

The adjoint of a matrix A is the transpose of the matrix obtained replacing each element a;jj in A by its
cofactor Ajj F’: The adjomt of A is written as adj A. Thus if

aj| 11 a3 I FA“ 21 A3|I
a a | Ga A A J
A= nJd then adj A = G 12 2 2 J

Hd,] 32 dnK HA1\ 23 A33K
L2 -1

N: *Q

Example - 1 : Find inverse of the following matrices M

LB

Sol" : (i) Given A= M P Al=7

Nl :Q
adj A
Al = |Al A0
So it has inverse
Adj (A)
Minor of 2, Mj; = 3, Cofactor of 2, C11 =3




Minorof =1, M 12 =1,
Minoir of 1, M2 =-1,
Minor of 3, C22 =2,

L3 IO
P

adj(A) = M ’
N-1 'Q
L: 0
;o adjA M_1 gP
A= A - N Q

L O

L 0
1 2 3 2
ra-M P..B: u 5
NJ 4Q Nl 4Q
Calculate (i) AB (i1) BA

Find the inverse of the following :

Cofactor of -1, C 12 = -1
Cofactorof 1, C 21 =1
Cofactor of 3, C2 =2

Assignment

L
M
M: 1

Ms -3 2

N

3 2 30
P
1P
=)

10




CHAPTER -2

INTEGRAL CALCULUS

INTEGRATION AS INVERSE PROCESS OF DIFFERENTIATION

Integration is the process of inverse differentiation .The branch of calculus which
studies about Integration and its applications is called Integral Calculus.

Let F(x) and f(x) be two real valued functions of x such that,

~F(x) = f(2)

Then, F(x) is said to be an anti-derivative (or integral) of f(x).
Symbolically we write [ f(x) dx = F(x).

The symbol | denotes the operation of integration and called the integral sign.
'dx'denotes the fact that the Integration is to be performed with respect to x .The function
f(x) is called the Integrand.

INDEFINITE INTEGRAL

Let F(x)be an anti-derivative of f(x).
Then, for any constant ‘C’,

S{F () + €} = F(x) = f(x)

So,F(x) + C is also an anti-derivative of f(x), where C is any arbitrary constant. Then,

F(x) + C denotes the family of all anti-derivatives of f(x), where C is an indefinite constant.
Therefore, F(x) + C is called the Indefinite Integral of f(x).

Symbolically we write

[f(x)dx = F(x) + C,

Where the constant C is called the constant of integration. The function f(x) is called the
Integrand.

Example :-Evaluate [ cosx dx.
Solution:-We know that

[
—SInX = COoSX

dx
So, [cosx dx =sinx +C
ALGEBRA OF INTEGRALS

LI[f(x) + g)] dx = [ f()dx + [ g(x)dx

2. [kf(x)dx=k/[f(x)dx, for any constant k.

3.flaf(x)+bgx)]dx=a/ f(x)dx+ b [ g(x)dx,
for any constanta & b

11




INTEGRATION OF STANDARD FUNCTIONS

7 x71+1
1. J-DIC dx—m+6,(n¢—1)
2. f;dx=ln|x|+C
3. [ cosx dx = sinx + C
4. [sinxdx = —cosx+C
5. [ sec’xdx =tanx + C
6. J cosec?x dx = —cotx + C
7. [secxtanxdx = secx + C
8. [ cosecx cotx dx = — cosecx + C
9. Je*dx=e*+C

X

10. [a*dx=—+C ,(a>0)
11. [tanx dx = In|secx| + C = —In|cos x| + C
12. [ cotxdx = In|sinx| + C = —In|cosecx| + C
13. [ secxdx = In|secx + tanx| + C
14. [ cosec x dx = In|cosecx — cotx| + C

1 oz
15.  [s=sdx=sin"'x+C
16. [——dx=tan"'x+C

1-§-x1
17. [——=—=dx=sec”'x+C
X 1x—1

18. [m=dx=I|x+VxZ+1|+C

1
19. fﬁdx=ln|x+\/x2—1|+c

a?sin?x+b?cos?x

dx

Example:- Evaluate [

sin?2x

. . a’sin’x+b?cos?x
Solution:- [ —————dx

sin22x

B f a?sin?x+b?cos?x
- 4sin2x.cos2x

a? 1 b? 1
—choszx dx + Tfsinzx

az 2 b2 2
= [ sec’xdx + — [ cosec®x dx

:i [a? tanx — b? cotx] + C

INTEGRATION BY SUBSTITUTION

When the integrand is not in a standard form, it can sometimes be transformed to
integrable form by a suitable substitution.

The integral [ f{g(x)}g (x)dx can be converted to
[ f(t)dt by substituting g(x)by t.

12




13

So that, if [ f(t)dt = F(t) + C.then

J fle()}g (x)dx=F{g(x)} + C.

This is a direct consequence of CHAIN RULE.
For,

d d dt dt '
= [F{g(x)}+C] = = [F(t) + C]-; = f(t)-a = flg(x)}g (x)
There is no fixed formula for substitution.

Example:- Evaluate [ cos(2 — 7x) dx
Solution:- Putt = 2 — 7x

So that 5= = —7 = dt = —7dx
fcos(2—7x)dx = :_/,lf cost dt

=715int+C

= %lsin(Z 7 71 S o

INTEGRATION BY DECOMPOSITION OF INTEGRAND

If the integrand is of the formsinmx - cosnx, cos mx - cosnx or sinmx - sin nx,
then we can decompose it as follows;

I sinmx - cos nx:% +2sinmx - cosnx = %[sin(m + n)x + sin(m — n)x|
1
2. COS X - COS NX=; [cos(m — n)x + cos(m + n)x]

: : 1
3, sinmx - sinnx=- [cos(m — n)x — cos(m + n)x]

Similarly, in many cases the integrand can be decomposed into simpler form, which can be
easily integrated.

Example:-Integrate [ sin 5x - cos 2x dx

Solution:- [ sin 5x - cos 2x dx
— %f[sin(S + 2)x +sin(5 — 2)x] dx
= %f(sin 7x + sin 3x) dx
= l[—lcos 7x — = cos Bx] +C
2l 7 3

1 1
=——cos7x —-cos3x+C
14 6

sin 6x + sin 4x

Example:-Integrate [

COS 6X + COS 4Xx

. sin6x + sin4x 2sin5x cosx
Solution:- f— X = f—
_— COS 6Xx + COS 4Xx 2cos5xcosx
- J- sin 5x
COS 5x
dt . .
Put t = cos 5x, so that i —5sin5x = dt = —5sin5x.dx
sin 6x + sin4x 1 ~dt 1
o [EEEESNE gy = 2 (S = —Zin|t] +C
COS 6x + COos 4x 5 t 5




— —élnlcos 5x|+ C

= élnlsec 5x| + C

INTEGRATION BY PARTS

This rule is used to integrate the product of two functions.
If u and v are two differentiable functions of x, then according to this rule have;

fuvdx=ufvdx—f[3—:fvdx]dx
In words, Integral of the product of two functions

= first function x (Integral of second function)
— Integral of (derivative of first x Integral of second)

The rule has been applied with a proper choice of ‘First’ and ‘Second’ functions .Usually
from among exponential function(E),trigonometric function(T),algebraic
function(A),Logarithmic function(L) and inverse trigonometric function(I).,the choice of
‘First’ and ‘Second’ function is made in the order of ILATE.

Example:-Evaluate [ x sin x dx

Solution:- [ x sin x dx
; dx :
=x [sinxdx — [ [E.fsmx dx] dx
= —xcosx + [ cosx dx
= sinx —xcosx + C

Example:-Evaluate [ e* cos 2x dx

Solution:- [ e* cos 2x dx = e* cos 2x — [ e*(—2sin 2x) dx
= e* cos 2x + 2 [ e* sin 2x dx
= e* cos 2x + 2 [e* sin2x — 2 [ e* cos 2x dx]
= e cos2x +2e*sin2x — 4 [e*cos2xdx + K
So,5 [ e* cos 2x = e*[cos 2x + 2sin 2x] + K

& Je¥cos2udx = %[cos 2x + 2sin2x] + C (where = K/2 )

INTEGRATION BY TRIGONOMETRIC SUBSTITUTION

The irrational forms Va2 — x2 , Vx2 + a? , Vx% — a? can be simplified to radical
free functions as integrand by putting x = asinf ,x = atan 8 , x = a sec 0 respectively.
The substitution x = atan @ can be used in case of presence of x? + a? in the integrand,
particularly when it is present in the denominator.

ESTABLISHMENT OF STANDARD FORMULAE

dx . =1 X
s ¥ e

14




fd—x=§sec‘1§+C
fx‘:\/_—x_—ln|x+\/m|+C
5. f =In|x +Vx2—a?| +C
Solutions

1. Let x = asin@, so that dx = acos@ df and 6 =sin‘1§

d cos 6 do acosf .
.-.f\/azixzzf\/a =f da:fd9=0+C=Sln 1§+C

a?-a?sin26 acosf

Ll O o

o} Let x = atan @, so that dx = a sec?0 df and 6 = tan'lg

. dx asec?0 df asec’0 d6 . asec?6 - _1
P [ S = [ =[P d0=2[do=20+C

x2+a? a? tan?6+ a? a?(tan?6+1) a’sec?6

_1x

:ltan +C
a

3 Let x =asech, sothatdx = asecOtanb df and 6 = sec‘lg

. f _f asecOtan0 do _J- asecOtan0 lfd@

a secOVaZsec20—-a? Y asecOatan@

=20+C =2sec i+
a a a

x\/xz—a2

4, Let x = atan@, so that dx = a sec?0 dé.
asec?f df asec?8
‘== o= = [ 5 40=) sec8 d6 = In|sec + tan 6] + K

2
:lantanZB +1+ tan9| + K:ln‘ ’z—5+ 1 +§ +K
=In|x + Vx2 + a?| + K — In|a|
:ln]x + Vx?% + a2| +C (Where C=K — In|al| )
5. Let x = asec@, sothatdx = asecOtan0 dé
asecfOtanf dO asecOtanf
f\/xz—az f\/azsecze—az —f atan@ do _fsece do

_lnlsec9 +tan@| + K _ln|sec9 + Vsec?6 — 1| + K

_F|+K

x+Vx2-a?

=In

=ln |——

:lnlx + sz - a2| + K —1In|a|
:Inlx + VxZ — a2| +C (Where C=K — In|a| )

SOME SPECIAL FORMULAE
1. [Va? —x%2dx == \/ —xZ+= sm —+C

2 [VxZ +a? dx=§\/x2+a2+?ln|x+\/x2+a2|+c
3. f\/xz—azdx—f\/ az—a?zln|x+\/x2—a2|+C




Solutions:
L [Va? —x2dx = [1 -Va% — x2dx
NE 3 )
= X\/W+f‘/ﬁ
N oy Y s G A
=xVa? — x? +a2fm—f\/a2 — x2dx

dx
2 [Va2 — x2dx = xVa? — x? +a2fﬁ
=xVa? — x? +azsin‘1§+K
2
[Va? — x2dx =§\/a2 — x2 +a?sin"1§+C ( Where C =§)

2 [Vx2 +a?dx = [1 -Vx? + a?dx

_ 2 % %
= xVx2+a fx(zg/m)dx
X
= xVx2+a2—f\“=ad
2 2
=xVx2+a? — f(x“:)za
x+(l

= 2 2 2 2 2
=xVx2+a?— [Vx? +a%dx+a IW
ST T R = 2 2
2 [Vx2 +a?dx = xVx2+a?+a fm
So,2 [VxZ+ a2dx = xVxZ+aZ+a’ln|x + VxZ + a?| + K
2
JVxZ+a%dx = >VxZ + a? + —In|x + VxZ + a?| + C

(Where € =)
3 [VxZ —aZdx = [1 -Vx? — a2dx
&= xm—fﬂg__azdx
:xm—f%dx
=xVx?—a? - [Vx? —a?dx + @* [ (==
2 [Vx? —a%dx = xm—azf x2 —
So, 2 [Vx%Z —a%dx = x xz—az—azln|x+m|+l(
fmdx=§m—2—zln|x+m|+6
(WhereC=§)

METHOD OF INTEGRATION BY PARTIAL FRACTIONS

If the integrand is a proper fraction E 3

partial fractions and each partial fraction can be integrated separately by the methods outlined
earlier.

then it can be decomposed into simpler

16




SOME SPECIAL FORMULAE
dx 1 xX—-a
1. fxz_az—zln m +C
dx 1 a+x
2 Jaa=anfE]+e
Solutions:
1 § 1 1 1 1
L Wehave, x2-a?2  (x-a)(x+a)  2a (E . m)
dx 1 1 1
[t =50l GG ) dx
:i [In|x —a| = In|x + a|]] + C
dx 1 a
ey e |m1+ ¢
2 We have

*az-x2  (a+x)(a-x)

1 1 1
-G
2a \a+x a-—x
dx 1 ( 1 1
LY WS TP
fa‘—x‘ Zaf a+x a-x

:i[lnla + x| —Inla—x|]+C

a+x

a-—x

[ =1y +C

a2-x2 2a

x%41

Examgle:— Evaluate fmdx

" EHL o 8 B O
Solution:- Let Tl 2 g

Multiplying both sides of (1) by (x — 1)?(x + 3),

= x*+1=Ax-1DxE+3)+Bx+3)+C(x—1)% -—mmv

Putting x = 1 in (2),we get,B = %
Putting x = —3 in (2),we get,10 = 16C = C =

Equating the co-efficients of x? on both sides of (2), we get
1=A+C=A=1-2=:
Substituting the values of A,B &C in (1) ,we get

x241
(x—l)z(x+3)

@ojn

f xX“+1
(x 1)3(x+’3)
3

dx

- —f(x 1)Z 8 x+3
= —ln|x—1|+—ln|x+3|

2(x— 1)+C

17
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— X dx
(x-1)(x2+4)

Example:- Evaluate [

_ A Bx+C 1
(x-1)(x2+4) x—1 ' x%+4 (1)
Multiplying both sides of (1) by (x — 1)(x? + 4),we get
x=A(x?+4) + (Bx + C)(x — 1)-—mmmmmmem- 2)

Putting x = 1in (2), we get.A = =
Putting x = 0in (2), we get,0 =44 —C = C =44 = C =<
Equating the co-efficients of x2 on both sides of (2), we get
0=A+B=B=-:
Substituting the values of A, B and C in (1) we get
X 1 1 (x—4)

(x=1D(x%2+4) - S(x—- 1) T 5(xZ+4)

Solution:- Let

X x—4
f(x 1)(x2+4) f___ X2+4
xdx
—_f___ x§+§r _fx2+4
xax
=3 mfxzﬂ 'fxz+4

_1 111 < =g
_Slnlx 1] 10]nlx +4|+5tan (2)+C

2

Example:- Evaluate [ mdx

—_—— . x _ y
Solution:- Let x“ = y Then D DD

T .. BRI
(y+1)(y+4)  y+1 = y+4
Multiplying both sides of (1) by (y + 1)(y + 4),we get
y=AWy+4)+B(y+ 1)----—---- (2)
Putting y = —1 and y = —4 successively in (2),we get,A = —% andB = %
Substituting the values of A and B in (1),we get
I 4
(+D(C+49)  3(0+1) | 3(0+9)
Replacing [] by [7°, we obtain
2 i 4

()~ D T X ’+4)

2

X
f(x2+1)(x2+4) - _J.x2+1 fx3+4
- % < -1(X
= 3tan x+3tan (2)+C
DEFINITE INTEGRAL

If f(x) is a continuous function defined in the interval [a,b] andF(x) is an anti-
dF(x) = f(x) .then the define integral of f(x) over [a,b] is denoted by

derivative of f(x) i.e.,

[ f(x )dx and is equal to F(b) — F(a)




i.e., [ f(x)dx = F(b) - F(a)

The constants a and b are called the limits of integration. ‘a’ is called the lower limit and ‘b’
the upper limit of integration.The interval [a,b] is called the interval of integration.

Y.
A
=f(x)
o[ 4 d b 4
Geometrigally, the definite integral fab f(x)dx is the AREA of the region bounded by the
curve y =% f(x) and the lines x = a,x = b and x-axis.

EVALUATION OF DEFINITE INTEGRALS

To evaluate the definite integral f: f(x)dx of a continuous function f(x) defined on [a, b],
we use the following steps.

Step-1:-Find the indefinite integral [ f(x )dx
Let [ f(x)dx = F(x)

Step-2:-Then, we have
J; F@x)dx = F(x)14=F(b) - F(a)

PROPERTIES OF DEFINITE INTEGRALS

1. [2 fQ)dx = — [ f(x)dx

2. [feydx =[] f(y)dy = [, f(z)dz

i.e., definite integral is independent of the symbol of variable of integration.
3. [Pfeodx=[CfG)dx= [P f(x)dxa<c<b

4. foaf(x)dx=foaf(a—x)dx,a>0

a _[2f fGax,  iff(=x)=f(x)
O 0 € 3 T = R A

2a _[205 fx)ax,  iff2a-x)=fx)
6. fo flx )dx—[ %, iff(2a-x)=-f(x)

1
Example:- Evaluate [ xtan™x dx
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Solutlon -We have, [ xtan™'x dx = —tan 1y — —fx2+1
_ (x +1)— 1
= tan 1x — f 2+1

:—tan x——fd += f

i+1
z

=z tan~lx -Z 4= tan 5
2 2 2
(x%+1)

X
= tan —=x—=
2 2

1
1 i x2+1 ol X

[ xtan"lx dx = [—-tan 1% —-—]
0 2 21

= 1 T
=tan"'1—--=-—
2 4

N | =

T <
Example:- Evaluate [, V&, _Sinx

sinx+cosx

Solution:-Let I= fon/ 2__SX__

S(l’l;l x+)cosx
_("/2 sin\7—x
_fo sin(l—-x)+cos(’2—'—-x) ax
_f T/, cosx

cosx+sinx

. 2=4]= fo A fon/Z&

sinx+cosx cos x+sinx

1 Ty
] =f; /2 dx:x]o/z =_72£
"o I:

1
f”/z sinx
0  sinx+cosx

Il
NS

AREA UNDER PLANE CURVES
DEFINITION-1:-

Area of the region bounded by the curve y = f(x), the X-axis and the lines x = a,x = b is

defined by

[y yax| = |f; faodx|

Area=

f n/, (sinx+ cosx)
Yo (sinx+cosx)

\ 4
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DEFINITION-2:-Area of the region bounded by the curve x = f(y), the Y-axis and the lines

y = ¢,y = d is defined by
Arca:lfcd xdy| = |de f(y)dyl

\ 4

Example:-Find the area of the region bounded by the curve y = e3*, x-axis
and the linesx = 4, x = 2.

Solution:-The required area is defined by

A:f4e3xdx =2 8% ¢ — _1_(6,12x — %)
2 3 2 3

Example:-Find the area of the region bounded by the curve xy = a?, y-axis
thelinesy =2,y =3

> A a?
Solution:- We have, xy = a2 =x= -

~ The required area is defined by
= — 2 (3% _ .2 3 _ 2 — 21n (3
A=[] xdy = a* |, = [@’Iny]3 = a?(In3—=1n2) =a ln(;)

Example:-Find the area of the circle x*+y? = a®

Solution:-We observe that, y = Va?—x? in the first quadrant.

X

A

(2,0) X

~ The area of the circle in the first quadrant is defined by,

A= foa vaz—x2dx

and




[ CO-ORDINATE GEOMETRY |

STRAIGHT LINE

CO-ORDINATE SYSTEM

22

We represent each point in a plane by means of an ordered pair of real numbers, called co-ordinates.
The branch of mathematics in which geometrical problems are solved through algebra by using the co-

ordinate system, is known as co-ordinate geometry or analytical geometry.

Rectangular co-ordinate Axes
Let X'OX and YOY' be two mutually perpendicular lines
(called co-ordinate axes), intersecting at the point O.
(Fig.1).We call the point O, the origin, the horizontal line
X'0OX, the x-axis and the vertical line YOY', the y-axis.

We fix up a convenient unit of length and starting from the

Y

A

- N )

origin as zero, mark. distances on x-axis as well as y-axis. X <——
The distance measured along OX and OY are taken as
positive while those along OX' and OY' are considered
negative.

Cartesian co-ordinates of a point
Let X'OX and YOY' be the co-ordinate axes and let P be a
point in the Euclidean plane (Fig.2). From P draw PM L
X'0OX.
Let OM = x and PM =y, Then the ordered pair (x, y)
represents the cartesian co-ordinates of P and we denote
the point by P(x, y). The number x is called the x-co-
ordinate or abscissa of the point P, while y is known as

its y-co-ordinate or ordinate. X'€
Thus, for a given point the abscissa and the ordinate are

the distances of the given point from y- axis and x-axis
respectively.

Quadrants =

The co-ordinate axes X'OX and Y'OY divide the plane in to four
regions, called quadrants.

The regions XOY, YOX', X'OY' and Y'OX are known as the
first, the second, the third and the fourth quadrant respectively.

(I)
(+,1)

(Fig.3) In accordance with the convention of signs defined above  yr .
for a point (x, y) in different quadrants we have

Ist quadrant : x >0 and y >0

2nd quadrant : x <O and y > 0

3rd quadrant : x <Oandy <0

4th quadrant : x >0and y <0

(1II)

Yl

(+,-)
(IV)
(Fig.—3)




DISTANCE BETWEEN TWO GIVEN POINTS

The distance between any two points in the plane is the length of the line segment joining them.
The distance between two points P(x;, y1) and Q(xz, y2) is given

byIPQI\#': Nix2-x1)2+G2-y1)2 S A .
Proof : Let X'OX and YOY' be the co-ordinate axes (Fig.4). Let 1@\:\“\ QX y2)
P(x1, y1) and Q(x2, y2) be the two given points in the plane. R
From P and Q draw perpendicular PM and QN respectively on
the x-axis. Also draw PR L QN.
Then, OM = x1, ON =x»
PM=yi &QN =y
~PR=MN=ON-OM=x2-x1and X'< Y N X
QR=QN-RN=QN-PM=y2-y|
Now from right angled triangle PQR,
we have PQ® = PR? + QR? [by Pythagoras theorem)] \ (Fig.—4)
=(x2—x 17+ (y2-y 1) o

[
iPQI:\;n(xz—x D2+(y2-n1?2 S
Cor : The distance of a point P(x, y) from the origin O (0, 0) is

[x=0r'y=03 sfimey
= - ? -~ & =D ety <L
= X +y VXY

Area of a triangle :

Let ABC be a given triangle whose vertices are A(x1, y1),
B(x2, y2) and C(x3, y3). From the vertices A, B and C
draw perpendiculars AL, BM and CN respectively on x-
axis. (Fig.5). : :
Then, ML =x1—x2; LN=x3—-x jand MN = x3-X 2 :

Area of A ABC :

= area of trapezium ALMB + area of trapezium ALNC
— area of trapezium BMNC (Fig.—5)
1 |
=2 (AL+BM)ML+ 2 (AL+CN).LN
1
— 2(MB+CN).MN
1 1 1
== (1 +y) (XI—x2)+~ (Y1 +y3) (3-x 1) -~ (2 +y3) (x3—-x 2/
2 2 2

2 [X1y1 + X1y2 — X 2y1 — X 2¥2 + X3Y1 + X3Y3 — X 1y1 — X 1y3 — X 3y2 — X 3Y3 + X2y2
+ x2y3] 1

I

2[X1y2—X 2yl +X3y1 —X 1y3—X 3y2 +
x2y3] 1

E [xi(y2—y3) +x2(y3—y 1) +x3 (y1—y2)]
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In determinant form, we may write

X1 y1 |1
. |xe ¥y
Areaof AABC= 2 x3 vy 1

Condition for collinearity of Three points :
Three points A(x1, y1), B (x2, y2) and C(x3, y3) are colliner, i.e. lie on the same straight line, if the area of
A ABC is zero. So the required condition for A, B, C to be collinear is that
1

2 [xXi(y2—y3)+x2(y3—-y 1)+ x3(y1—y2)]=0
P xi(y2—y3)+xay3—-y)+x3(y1—-y2=0
Formula for Internal Divisions :

The co-ordinates of a point P which divides the line joining A(xy, y;) and B(xz, y2) internally in
the ratio m : n are given by

- =MX2+0X1 ,— =my2+ny]

m+n m+n
Example — 1 : In what ratio does the point (3, —2) divide the line segment joining the points (1, 4) and
(-3,16):
Solution : Let the point C (3, —2) divide the segment joining A(1, 4) and B (=3, 16) in the ratio
K:1
F-scs+ 116k+4
The co-ordinates of ‘C” are G R J

H k+1 k+1 K
But we are given that the point C is (3, —2)

=3k +1

Wehave =77 =3

or -3k+1=3k+3

or —6k=2

1
k==3
C divides AB in the ratio 1 : 3 externally.
SLOPE OF A LINE YA
Angle of Inclination : The angle of inclination or simply the inclination of a line B

is the angle O made by the line with positive direction of x-axis, measured
from it in anticlock wise direction (Fig. 6).
Slope or gradient of a line : If 6 is the inclination of a line, then the value of tan 6 8
is called the slope of the line and is denoted by m. 0 A \ >X
CONDITIONS OF PARALLELISM AND PERPENDICULARITY

(Fig.— 6)
1. Two lines are parallel if and only if their slopes are equal.

2. Two lines with slope m; and m; are perpendicular if and only if mym; = -1 = |
Yoy

3. The slope of a line passing through two given points (x1, y1) and (x2, y2) is given by m = Grigte

X1
4. The equation of a line with slope m and making an intercept 'c' on y-axis is given by y = mx + c.




Proof : Let AB be the given line with inclination 0 so that tan 0 = m. Let it intersect the y-axis at C so that

OC =c. (Fig.7)

Let it intersect the x-axis at A.

Let P(x, y) be any point on the line.

Draw PL perpendicular to x-axis and CM A PL
Clearly, P MCP =D OAC =q
CM=0OL=x;

and PM=PL-ML=PL-0OC=y-c
Now, from rt. angled D PMC

PM y-¢
We get tan 0 = CM orm=""~

or y=mx + ¢, which is required equation of the line.
5. The equation of a line with slope m and passing through a point (x;, y;) is given by (y -y

1) =m(Xx-X7y)
6. The equation of a line through two given points (xy, y1) and (x2, y2) is given by

y2-¥y1
y=y = .(x-Xx)
1 X2 - x1 1

7. The equation of a straight line which makes intercepts of length ‘a’ and ‘b’ on x-axis and y-axis

X Yy

respectively, is a +b =1

Proof : Let AB be a given line meeting the x-axis and y-axis at A and B respectively

(Fig.8). Let OA=aand OB =b
Then the co-ordinates of A, B are A(a, 0) and B(0, b)
The equation of the line joining A & B is

N

B(0, h)

A(a, Q)
>X

b-0 ~
(y-0)= 0-a (x-a)
-b b
Py= — x-a
a
C
¥y X
P b —éd +1
Xy
=] at b=1

this perpendicular with the positive direction of x-axis. Then the equ
xcosa+ysina=P

N

N

b

A%

(Fig.— 9)

S

(Fig.—8)

Let P be the length of perpendicular from the origin to a given line and a be the angle made by

ation of the line is given by
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Conditions for two lines to be coincident, parallel, perpendicular or Intersect :
Two lines aix + byy +¢1 =0 and az2x + bay + c2 = 0 are

a boa

(i) conicident, if a = by =c2 :
a b , ¢
— iy
(i1) Parallel if a» = by ¢

(ii1) Perpendicular, if ajaz + bib2 =0 ;
(iv) Intersecting, if they are neither coincident nor parallel.
Example — 1 : Find the equation of the line which passes through the point (3, 4) and the sum of its
intercept on the axes is 14.

Sol" : Let the intercept made by the line on x-axis be 'a' and 'y'- axis be 'b’
iie.at+b=14ie,b=14-a

.. Equation of the line is given by

X y

FER TN i)

As the point (3, 4) lies on it, we have
3 4

2 ", =1

or3(14—a)+4a=14a—a >
or42-3a+4a=14a—a ’
ora’—13a+42=0
or(a—7)(a—-6)=0
ora=7ora=6

Putting these values of a in (i)

X ¥y
7 -i—7:l or x+y="7
X Y
and 6 +8 = lor 4x +3y =24

Example -2 : Find the equation of the line passing through (-4, 2) and parallel to the line 4x -3y =0
Sol" : Any line passing thorugh (—4, 2) whose equation is given by
(y=2)=mx+4) ..(»1
and parallel to the given line 4x —3y =0
4
whose slope is y = 3— X
4
Here 'm' = 3—
It's equation is
4
(y=2)=3(x+4)
3y—-6=4x+ 16
ordx —3y+22=0

(Fig.- 10)
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Example — 3 : Find the equation of the line passing through the intersection of 2x —y —1 =0 and 3x -
4y + 6 = 0 and parallel to the linex+y—-2=10
Sol" : Point of intersection of 2x —y—1=0and 3x -4y + 6 =0

Foixe-cay 1) x3-60)l
J

G g
H2w-3c1) 2-3cn K

F-6-4 3-121 F-10 -l
-G ; J -G —J

H-8+3 —8+3K Hs 5K

Any line parallel to the line x + y—2 is given by x + y + k = 0.... (i)
Since the line passes through (2, 3) hence it satisfies the equation (i)
S0,2+3+k=0

P k=-5

Now putting the value of k in equation (i), we get x + y—5=0

=(2,3)

. Equation of the lineisx +y—-5=0

Assignment

Find the equation of a line parallel to 2x + 4y — 9 = 0 and passing through the point (-2, 4)
Find the co-ordinates of the foot of the perpendicular from the point (2, 3) on the line 3x —4y + 7 =0

Find the equation of the line through the point of intersection of 3x + 4y —7=0and x —y + 2 =0 and
which is parallel to the line 5x —y + 11 =0

rr
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CIRCLE

A circle is the locus of a point which moves in a plane in such a way that it’s distance from a fixed point is
always constant.
The fixed point is called the centre of the circle and the constant distance is called its radius.
Equation of a circle (Standard form) AY
Let C(h, k) be the centre of a circle with radius ‘r’ and let P (x, y) —B(x,y)
be any point on the circle (Fig.1).
Then CP=r P CP* =1
b x-h)2+@y-k 2=r

Which is required equation of the circle. X'< X
Cor. The equation of a circle with the centre at the origin and - vy (Fig.—1)
radius r, is x> + y2 =1 (Fig.2).

Proof : Let O (0, 0) be the centre and r be the radius of a circle and let X
P (x, y) be any point on the circle. P(x, y)
Then OP =1 b OP* =1* f
bx-0)2+(y-0)2=¢ 2 < w(om "
b x>+ y2 =r? -

Example — 1 . Find the equation of a circle with centre (-3, 2) and radius Y.
7. Sol" : The required equation of the circle is X (Fig.—2)

[x-E3)] *+(y-2)°=7
or (x +3)° +(y=2)2=49
or x> + y2 +6x-4y-36=0
Example — 2. Find the equation of a circle whose centre is (2, —1) and which passes through (3, 6)
Sol" : Since the point P (3, 6) lies on the circle, its distance from the centre C (2, —1) is therefore
equal to the radius of the circle.

h Qg P
\Radius=CP= ' °° o
s Vi3 +6+1 =50
So, the required equation of the circle is
x=-2)2+(y+1)2=50 &

or x> +y’ —4x+2y-45=0
Example — 3 . Find the equation of a circle with centre (h, k) and
touching the x-axis (Fig.3).
Sol" : Clearly, the radius of the circle=CM =r =k
So, the required equation
(=h) >+ (y—k) > =K >
orx’ +y° —2hx—2ky+h > =0 (Fig.-3)
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Example — 4 . Find the equation of a circle with centre (h,k) and
touching y-axis(Fig.4).
Sol" : Clearly, the radius of the circle=CM =r=h
So, the required equation is (x —h) > + (y —=k) > =h
orx2+y2-2hx—2ky+k 2=-90
Example — 5 . Find the equation of a circle with centre (h,k) and
touching both the axes (Fig.5).
Sol" : Clearly, radius, CM=CN =r
i.e. h=k =r (say)

2

\ the equation of the circle is (x —r) Py (y—r) =
2 2 o) 2
rorx"+y -2r(x+y)+r°=0

GENERAL EQUATION OF A CIRCLE

Theorem : The general equation of a circle is of the form X% + y2 +2gx +2fy + ¢ =

0 And, every such equation represents a circle.
Proof :
x-h2+@y-k’=r
Orx’+y?—2hx-2ky+(h 2+k*=r?%)=0
This is of the form
x2+y2+2gx+2fy+c:0
Whereh=—-gk=—-fandc=(h % +k2—r2)

Conversely, let X2+ y2 + 2gx + 2fy + ¢ = 0 be the given condition.

Then, x> + y2 +2gx +2fy +c=0
b (x*+2gx+g)+ (P +2fy+ ) =(@@+f2-c¢)

=} (x+g)2+(y+l‘)2: é\g2+fz—c j2

b [x - (<g)] 2+ry—<—m2:[v"g2+f2—c]_.
ID(x—h)2+(y—k)2:r2

Whereh=—-g k=—fandr= 4/g" +f° -c¢
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The standard equation of a circle with centre (h, k) and radius r is given by

This shows that the given equation represents a circle with centre (—g, —f) and radius.

= g® +12% —c, provided & + f* > c.

EQUATION OF A CIRCLE WITH GIVEN END POINTS OF A DIAMETER

Theorem : The equation of a circle described on the line joining the points A(X1, y1) and B (x2, y1) as a diameter,

S(X-—XD)EX-Xx2)+(y-yn(y-y2=0
Proof :
any point on the circle (Fig.6)..Y

Since the angle in a semi-circle is a right angle, we have DAPB = 90°

y-y
Now slope of AP = M P
N*-*Q
F)")’ I
And, slope of BP = G -
Hx—x: K

Since AP A BP, we have

L

Let A (x1, y1) and B (x2, y2) be the end point of a diameter of the given circle and let P (x, y) be

N

P(x,y)
Ay
(X,,v,)

>X

Y'  (Fig—6)
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y-y2
e do=-1
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Or(x—=x1)(xX=x2)+(y-y)(y—-y2)=0
Example — 1 . Find the equation of a circle whose end points of diameter are (3, 4)
and 3, 4)
Sol.. : The required equation of the circle is (x —3) (x +3) + (y—4)(y +4) =0
Le.x2—9+y:—16=0
orx:+y2=25
Example — 2 . Find the centre and radius of the circle.
X:+y:—6x+4y-36=0
Sol". : Comparing the equation with
X2 +y2 +2gx +2fy+¢c=0
We get 2g =6, 2f =4 and c = -36
or g=-3,f=2andc=-36
\ Centre of the circle is (=g, —f), i.e. (3, —
2) And radius of the circle.

= Je?+f2 —c={9+4+36=7

Assignment

1. Find the centre and radius of each of the following circles

x2 + y2 Fx—y—-4=0

Find the equation of the circle whose centre is (-2, 3) and passing through origin
Find the equation of the circle having centre at (1, 4) and passing through (-2, 1).
Find the equation of the circle passing through the points (1, 3) (2, —1) and (-1, 1).
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CHAPTER -4

VECTOR CALCULUS

Introduction :

At present vector methods are used in almost all branches of science such as Mechanics, Mathematics,
Engineering, physics and so on. Both the theory and complicated problems in these subjects can be discussed in
a simple manner with the help of vectors. It is a very useful tool in the hands of scientists.

Physical quantities are divided into two category scalar quantities and vector quantities. Those quantities
which have any magnitude and which and not related to any fixed direction scalars. Example of scalars are
mass volume density, work, temperature etc. Second kind of quantities are those which have both magnitude
and direction. Such quantities are vectors. Displacement, velocity, acceleration, momentum weight, force etc.
are examples of vector quantities.

Representation of vectors :

Vectors are represented by directed line segments such that the length of the line segment is the magnitude
of the vector and the direction of arrow marked at one end indicates the direction of vector. A vector denoted by

pd , is determined by two points P, Q such that the direction of the vector is the length of the straight line PQ

and its direction is that from P to Q. The point P is called initial point of vector p_Q’ and Q is called terminal

points.

Y

P Q

Note : The length (magnitude or modulus) of Aé or a generally denoted my | AB | or | a | thus | a | = length

(magnitude or modulus ? or vector a)

Types of vectors :

(i) Zero vector or null vector : A vector whose initial so terminal points are coincident is called zero or
the null vector. The modulus of a null vector is zero.

(ii) Unit vector : A vector whose modulus in unity, is called a unit vector. The unit vector in the direction

of a vector Zis denoted by 3. Thus 3] =1
(iii) Like and unlike vector : Vectors are said to be like when they have same sense of direction and unlike
when they have opposite directions.
(iv) Collinear or Parallel vector : Vectors having the same or parallel supports are called collinear vectors.
(v) Co-initial vectors: Vectors having the same initial point are called co-initial vector.

(vi) Co-planner vector : A system of vector and said to be co-planner in their supports are parallel to the
same plane.

(vii) Negative of a vector : The vector which has the same Magnitude as the vector a but opposite direction,

=P

is called the negative of : and is denoted by — ‘; There if P—Q) :; then &; =—7 .
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Operations on Vectors
Addition of Vectors :

Tringle Law of Addition of Two Vectors :
The law states that if two vectors are represented by the two sides of a triangle, taken in order, then their sum
(or resultant) is represented by the third side of the triangle but in the reverse order.

—

=~ = . =), .

Let a , b be the given vectors. Let the vector a be represented by the directed segment OA and the vector
i ; — 3 ; e 2 5
b be the directed segment AR so that the terminal point A of a is the initial

b
-
a
Fig. 1
— —_ 5 o
point of b . Then the directed segment OB (i.e. QB ) represents the sum (or resultant ) or a and b and is
written as a + E (fig. 2)
Thus, &: a)z\ + _B) = a4 —t;
B
-
74"
_.)
b
o = A
Fig.2
of addition of the vectors.

. . . =% = . -
Note : 1. The method of drawing a triangle in order to define the vector sum (a + b ) is called triangle law
2. Since any side of a triangle is less than the sum of the other two sides.

L — —_—
.. Modulus of QB is not equal to the sum of the modulus of OA and AB.
Parallelogram Law of Vectors

- >

— —
If two vectors @ and b are represented by two adjacent sides of a parallelogram in magnitude and direction,
common initial point.

Then

—_

then their sum a + b is represented in magnitude and direction by the diagonal of the parallelogram through their
- -
Let a and

—
b are two non-collinear vectors, represented by OA and OB .

;1)-*- E: (ﬁ%— ai: ()_A-)+ IA—C:ZCE.(fig-n;)

F¢
B > &
b
7
g a
b -
b
0 >
_>
. . = R . a
i.e. Their sum a + b is respesented by the diagonal

A
— Fig. -3
OC of the parallelogram.
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Polygon Law of addition of Vectors

- >
To add n vectors g . a,

OA, =23, A/A, =a,,...

= OA|+A|A3 +.....+An_,|A"

— _ S—
= (0AI+AA) +AA +. A A OA +A 2Az+..+An A,

— N -
= 0A;+A A +...FA A, T OAn
- =y - 3
Hence the sum of vectors a;, a, ...... 4, is represented by (O A, - This method of vector addition is called
“polygon law of addition of vectors.
Corollary : From the polygon law of addition of vectors, we have

—

OA +A A, +A A +.. 4 A A =OA, =—A_,O

OA|+A,A3+A2A3 +....+An A, +A 0=A 0O (Null vector)

". The sum of vectors determined by the sides of any polygon taken in order is zero.
Properties of Vectors Addition

(1) Vector Addmon is Commulative :

If a and b be any two vectors, then

e T T
a+b=b+a
Proof : Let the vectors a and b be represented by the directed segments OA and AB respectively so that

(ﬁg-4)_+ L
a=0A, b=AB

TR — — 2%

Now OB= OA 1 AB = OB - a + b
Complete the || gm OABC

-

Then OC AB b and CB OA— a

—y -

.OB=0C+CB = b + d
From (1) and (2) , we have

- - - -
a+b=b+a
2: Vector Addition is Associative.
A 223 — o - o —

If @, b, care any three vectors,then @ + (b + ¢c)=(a+b )+ c.
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—_—

- = — >
Proof : Let the vectors @ , b, c .be represented by the directed segments OA | AB, BC respectively; so

that (fig.5)

l

> T o — — —_
ﬂ:OA.h: AB, C:BC

- - Ty — —
Then @ +(b+ ¢ )= OA {(AB+BC)
=0A { AC [A Law of addition]
= 0C [A Law of addition]

Eid - —

o a+('g+ ¢ )=0C...... (1)

Again, (2 +b )+ ¢ =(OA + AB )+ E&

= OB+ BC [A Law of addition]
=0C [A Law of addition]
S(a+b)+ ¢=0C........ (2)

From (1) and (2), we get

- - - = > o

a+(b+c):(a+'b)+c .
Remarks : The sum of three vectors 2, b, ¢ is independent of the order in which they are added and is

- -5 —

writtenas @ +b + ¢ .
(3) Existence of Additive Identity :

= =y g

For any vector @, a +Q = a  where O is a null (zero) vector.
> - —

>
Proof : Let the vector @ be represented by the directed segment OA ; so that 2 =OA |

—

o
Also let the Zero Vector O be represented by the directed segment AA ;
So that O = AA

A R— —_—
Then 2 +0= OA +AA
= OA [By Triangle law of addition]

a

— -

Thus, @ +Q = a

Note : In view of the above property, the null vector is called the additive identity.
Property 4 : Existence of Additive Inverse

—

5
For any vector g , there exists another vector — a such that

- . —
a 4+ (—- a ): O

> —3 .

Proof : Let OA = @ | there exists another AO=—- a

- -

—_— — —_— 3 4
“a+(-2a)=0A +A0 = 00= O|[ByALaw]
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Note : In view of the above property, the vector (— @ ) is called the additive inverse of the vector a .

Substraction of Vectors :

If @ and b are two given vectors, then the substraction of b from a (denoted by a- b ) is defined as
addition of — b to «a.

ic.a-b=d+(b)

.. It is clear that
Multiplication of a Vector by a Scalar

If 4 is any given vector and m is any given scalar, then the product m g or g m of the vector ¢ and the
scalar m is a vector whose
(i) Magnitude = [m]| times that of the vector a.
In other words, m g = |m| x| 4|
=mx| a|ifm=0
=—mxX | Z[lifm<0
(ii) Support is same or parallel to that of the support of a
and (iii) Sense is same to that of ¢ if m > 0 and opposite to that of g if m <0.
Geometrical Representation :

—_—

Let the vector @ be represented by the directed segment AB
Case I. Let m > 0. Choose a point C and AB on the same side of A as B such that

|AC|=m|AB]|, (fig.6)

a ma
~
>

A B
(m=>0)
Fig. -6

Then the vector mq is represented by AC.
Case II : Let m<0. Choose a point C on AB on the side of A opposite so that of B such that, (fig.7)

> >
ma a
> o —»
C & B
Fig. -7
|AC|=m,|AB|

—_ . S
Then the vector ,,, is represented by AC.

Linearly Dependent and Independent Vectors

=
Two non-zero vectors ¢ and b are said to be linearly dependent if there exists a scalar t (#0), such that g
=),
=tb
. . .« g - =?
This can be the case if and only if the vectors ¢ and b are parallel.
-
If the vectors gand b are not linear dependent they are said to be linearly independent and in this case
—

-
aand b are not parallel vectors.

Thus, if a= AB. b= BC, then Zand b are linearly dependent if and only if A, B, C lic in a straight line;
othewise they are linearly independent.
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Properties of Multiplication of a Vector by a Scalar
(I) Associative Law
5 s e -
If g is any vector and m, n are any scalars, then m( na )=mn (a)
Proof : If any one or more of m, n or a are zero, then m( na ) = mn ( a ). Each side = 0]
While if m # 0, n #0, a# 0, then the following four cases arise
i) m>0,n<0 (i) m<0,n>0
(iti) m>0,n >0 (iv) m<0,n<0
Case (I) Whenm>0,n<0

Let a be represented by the directed line segment AB (fig .8)

umi(

D" p C A B
Fig. 8
—
Since n < 0, take a point C on AB on the side of A opposite to that of B such that AC represents
ie] AC|=In|| AB|
— —
Since m > 0, take point D on AB on the same side of A as C such AD represents m ( na )
s s 5 -
ie.|AD|=m|AC |-m|n| AB|......[1]
Again, since m >0, n <0, so that mn < 0; take a point D" on AB on the side of A opposite to that of B such that
-

—
na

AD’ represents |mn| a .

(2)

i.e./AD’[= mn|| AB|=|m|n]| AB[=m|n[[AB | [ [m|=m as m > 0]
— —
“IAD’|=mn| | AB|....(2)
From (1) and (2), we get
— —_—
|AD’ |=|AD |
g B . ey o
which shows that D and D’ coincide, proving that m ( na ) = (mn) a
Proceeding on the same lines, the other three cases can be similarly proved.
Distributive Law : If m, n are any scalars and ¢ is any vector, then
—_—) —

(m+n) g = Ma + na

2
Proof : If ¢ = 0 or m, n are both zero, then

(m+n) g = Ma+na [ - Eachside= 0]
But if 3;66 , the following three cases arise :
(1) m+n>0 (2 m +n=0and

3) m+n<0

Case-I.Herem+n>0

The following sub-cases arise :
(i) m>0,n>0 (i1) m>0,n<0

and (iii) m<0,n>0

-

Let ¢ be represented by the directed segment AB .




—_—
Since m + n > 0, take a point C on AB on the same side of A as B such that AC represents (m + n) a.

(fig. 9)

._)
a
&> > &> >— - >
A D D’ C C B
Fig.- 9
1e. |[AC|=(m+n)| AB |.......... (1)
il —
Sub-case, (i) Sinﬁ) m > 0, take a point D on the same side of A as B such that AB represent ma ,
ie. |[AD|=m| AB |.......... (2)
— s

Again since n > 0, take a point D’ on the same side of A as B such that AD’ represents na .
ie. |AD’|=n| AB |.......... 3)

Thus, ma + na is represented by AC’(where (’is on the same side of A as B) such that
|AC'|= |AD | +|AD'|

=m | E |+n| E | [From (2) and (3)]

=>|A—C)'|:(m+n)|A_B,| ......... 4)

-~ From (1) and (4), | E’I = IK(—E> |, which shows that C and C’ coincide, proving that

—_— —
(m+n) g = Ma+ na

The other sub-cases of case (1) may be similarly proved.
Proceeding in the same way, we can prove the result for case 2 and case 3 also.
case 2 and 3 also. <t

g4
5 o &
3. If @ and b are any two vectors and m is a scalar, then
o 2 P —
m(q+b )= ma-+mb.(fig.10) o = A A
a Fig. - 10

Position Vector of a Point

Let O be any point called the origin of reference or simple the origin. Let P be any other point.
R —

Then OP is called the position vector of the point P relative to the P

point O.
Hence, with the choice of O as the origin of reference, a vector can
be associated to every point P and conversely.(fig .11)

Representation of a vector in terms of the position vectors of its end points :

- -

Let A and B be two given points and a , b the position vectors of A, B
respectively relative to a point O as the origin of reference; so that (fig. 12)

—> > —> -

OA=a and OB=b

.. From AOAB

—_— — —

OA+ AB = OB [BY A law of addition]
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— 5 —i - S
b-a

= AB=0OB- OA =
Note : :\—ﬁ = Position vector B — Position vector A.

SECTION FORMULA :
Statement . If a and l—; are the position vectors of two points A and B, then the point C which divides

AB in the ratio m : n, where m and n are positive real numbers, has the position vector.

- -
-~ na+mb
cC==—-

m+n
- -
Proof : Let O be the origin of reference and let a and b be the position vectors of the given points A and B

n

so that (fig.13)

—_— - — > A LEL = B
OA=2,0B=b \\
Let C divide AB in the ratiom : n . s B

AC m _ a b

SR, g (1)
m O
Hence is positive or negative according as C divides AB internally or externally. Fig. - 13
We have to express the position vector 66 of the point C in terms of those of A and B.
We re-write (1) as, nAC = mCB.
—_ — — —>

And obtain the vector equality n AC = m CB . Expressing the vectors AC and CB in terms of the position

vectors of the end points, we obtain
e —_— —_ —
n(OC- 0A)=m(OB-0C)

= (m+n) (TC):I]O.—I&'HTI&)

— nOA+mOB na+mb
= 0C= =
m-+n m+n
Mid-point formula : If C is the mid-point of AB._)then m:n=1:1
.. The position vector of ¢ is given by OC = 2 5 b
. = a+bh
.e. OC= ——

2
5 -
Hence the position vector of the mid point of the join of two points with position vectors, ¢ and b is

- =

a+b 1 — —
or 7 (OA+OB)

5 2
Example - 1 : Prove that
@ la+pl<lalpl G lal-Ibl<|a-bl
Solution : (i) When A, B, C are not -collinear, draw a AABC such that, (fig.14)

ess s = = =
(iii) |a-b|<|a|+]|b]

- — - —

a=AB and p =BC

Then a +p= AC [By Addition Law]

~. AC < AB + BC (As sum of two sides is greater than the third side) a
Fig. - 14
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~ IACI<IABI+IBCI

la+bl<lalHbl..... (1)

[.- AB=2a,BC=b and AC= a+b]
When A, B and C are collinear, then, (fig.15)

a=AB. b= BC

a+b=AC
2 B
A B C
Fig— 15
. AC=AB + BC

-~ |AC|=|AB|+|BC|

- - S5 -
=|a+b|=|alHb]|
Combining (1) and (2), we get

-5 - 3 —
la+b|<|al+ b

(i) |al=|a-b+b=[(a=b)+blu.. (1)
But|(2a—b)+ b[<[2=b Dl )
From (1) and (2), we get

2y

la|<la-b|+|b]
Ial—lblﬁla—bl

(i) la-bl=la+(=b)<|a|+-b]|
But|-b|=|b]|

- — ne —
~Lla=-b|<L|a]| +|b].
Example - 2: Prove by vector method that the lines segment joining the middle points of any two sides of a
triangle is parallel to the third side and equal to half of it.

Solution : Let ABC be a triangle in which D and E are the mid-points of AB and AC respectively.

(fig.16)
_ > e 4 l—> l———)
DE = DA + AE =75 BA * , AC
A
1 — 1
=5(BA * AC)= BC
. DE | BC D E
. =2 1] —. 1.
Also, DE=|DE|= ,BC =, |BCI=, BC ;
2 i C
D
Fig. - 16

1
Hence DE || BC and DE = = BC.
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Components of a Vector in Two Dimensions AY
Let XOY be the co-ordinate plane let P(x, y) N P (x.y)
be a point in this plane. Join P. Draw n
PM L OX, and PN L OY.(fig.17) N
Let ; and 3 be unit vectors along OX and OY. > X
l o « - A O M
Then oM =xj and ON =Y j. Fig. - 17

=3 i o =¥ A = .
OM and ON are called the vector components of Qp along x-axis and y - axis respectively.
Thus the component of Op along x- axis is a vector X, whose magnitude is | x | and whose direction is along
OX and OX’ according as X is positive or negative.
And, the component of OP along y - axis is a vector y, whose magnitude is | y | and whose direction is along
OY or OY’ according as y is positive or negative.
— — - - - " "
OP =OM + MP=OM+ ON =X; + Y]
Thus the position vector of the point P(x, y) is x| + y]
OP? = OM? + MP? = x? + y?

= OP = ,fx2+y2
5 OP = X% +y? v

Components of a vector along the co-ordinate axes. n
Let A(x,.y,) and B (x,, y,) be any two points in XOY plane. Q- ——— (x,.¥,)
Draw AD 1 OX, (fig.18) I .
BE 1 OX AF L BE, AP 1L OY and BQ L OY ¥ A
Clearly AF = (x, - x,) | 3]
and PQ =FB = (y, - y,) |
. A - ) 0 D E
Let i and ] be unit vectors along x-axis and y-axis respectively.
=2 5 Fig. -18
Then AF = (x,=x,) 1
and PQ = FB = (y,-Y)J
Clearly AB = AF + FB =(x,—x,) i+ ;=¥ Z P (X,¥.2)
- X 2
Then component of AB along x - axis = (X, —X) i
And component of A—)B along y - axis = (y,-y,) ]
z z
Also| AB|=AB = JAF 1 FB? = y(x, =x))’ +(y, - ¥,)’ .
Components of Vector in three dimensions : - > Y
Let OX, OY and OZ be three mutually perpendicular lines, y X

taken as co-ordinate axis. Then the planes XOY, YOZ and ZOX ‘/
are respectively known as XY plane, YZ plane and ZX plane. x .
(fig.19) Fig. -19
Let P be any point in space. Then the distances of P from YZ- plane. ZX — plane and XY - plane are respectively
called x-cordinate, y-cordinate and z-cordinate of P and we write P as P(x, y, z)

Position Vector of Point in space :

Let P(x, y, z) be a point in space with reference to three co-ordinate axes. OX, OY and OZ. Though P draw
planes parallel to yz-plane zx-plane and xy-plane meeting the axes OX, OY and OZ at A, B and C respectively.
The OA=x,0B=yand OC =z
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Let], 3 .k be unit vector along OX, OY and OZ respectively. (fig. 20)

e % —_— & —> 7S
Then OA =xi, OB =y j, OC =zk 7
N
——— — —ied. — — —
Now OP = QP + QP =(0A + AQ)+ QP C
s 5 — — - —
(OA + (%+ oC) ['.'AQ:OBandQP:OC]

A 2 = ¢ 2 T k ] ¥
=xi +yl) +zk 1 > Y
Thus, the position vector of a point e

y A A Q
P (X, y, z) is the vector (xi +yJ +z§
(X, y,2) (xi +) k) X Fig.-20

Now OP? = 0Q? + QP? = (OA? + AQ?) + QP?
=(0OA?+O0B? + OC?) =x? + y> + 7

OP = \f)f%-yz%-z2
|CTP)|=0P= VE +y* + 2

- ~ . ~
If a =ai +a,) +ak,

" 2 4 2
lal= \faj] +a; +a;

Components of Vector : If a; is the position vector of a point P(x, y, z) in space, then

1.
2.

< 4

op =Xi +yl +zk

A - ~ =2 » . , .
The vectors xj .,y j, z| are called the components of Op along x - axis y - axis and z-axis respectively.

ASSIGNMENTS

Show that the there points A(2, -1, 3), B (4, 3, 1) and C (3, 1, 2) are co-llinear.
Prove by vector method that the medians of a triangle are concurrent.

e el - A A > B3 A " p=:
Find a unit vector in the direction of (a+b) where a=i+j-k & b=i—-j+3k.

Scalar or Dot Product

Geometrical Meaning of Scalar Product

Definition :
» -

N

The scalar product of two vectors a and b with magnitude a and b respectively, denoted by a - b , is defined
=% -

as the scalar ab cos 0 , where 0 is the angle between of a and b suchthat 0 <0< 7.

Thus a. b=abcos0. B

As we see in above figure that (fig.21)

-

IOM] = [OB| cos 8 = | b | cos 8 = projection of b on a

_)
- red b
. ab=|a|(b]cos0)
=modulus of a x projection of b on a which gives, 0
- - » A
) =3 a- b O aT) M
projectionof hon a = -

|a| Fig.—21
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Similarly , if we drop a perpendicular from A on OB such that N is the foot of the perpendicular,
then (fig.22) B
ON = projection of a on b and ON = OA cos 0

- e N
= alcosG—Now AL, —|b|(|a|c056)
= magnitude of b x projection of d on b which gives that g’
- -
= ., ab
projectionof a on p= — - Fig. - 22
b 0 i A

Thus we can conclude that

(i) The dot product of two vectors is equal to the magnitude of one vector multiplied by the projection of
the other on it.
(i) The (scalar) projection of one vector on another.
Dot product of vectors
= Magnitude of the vector on which the projection is taken.
3.  Commutative and distributive Properties of Scalar Product :

1. Scalar product of two vectors obeys commutative law i.e.,
ed > Py
a-b=b-a
2. Scalar product obeys distributive law i.e.
- - - - = o

a-(b+c)=a-b+a-c
Other properties of scalar product : Apart from commutative and distributive properties.
Scalar product has some ther properties as follow :

= A

L. dd—ldi =i-i=j j=k-k=1

=

o

b 0:> is L to b
Hencef i=]J IQ k-i=0and j-i=k-j=i-k=0
3. Scalar product in terms of components :
If a=a ?+a2j+u312 and b=b, ?+b2j-kb3lA(

-

then a. b=ab +ab, +ab..

- —
- - = "
4. Angle between two non-zero vectors a and b is given by cos 0 = &h =a-b
a
a,b, +a,b, +a;b, ’
In terms of components cos 6 = \/a,2+a3 a§ \/b2+b2+b_§
- = - -
5.  Projectionof aon b is I_b)l a,b and projection of b ona is I_‘)l = AE
i ;
=5 =3 - = - - -
6. |a+ & —IaI +|b| +2a.b or(a+b)’_d’+b +Za b
- - - —> - - - =
7. |a b| _|a| ¢|b|—7a b or (a-b)*=32 +p*-2a.b
- - - o o 2
8. (a+b).(a- b)—lal—lbl or (a+b).(a-b)=a%— b’
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e -

Components of a Vector r along and perpendicular to a given Vector a in the Planeof a and r.

- =

- - a~r |2
The resolved part of T in the directionof @ =| - — &
a-a
- =
r-a |2
The resolved part of r is perpendicular to ais | = — |2
a-a

Example —1: Find the scalar and vector projections of ; _j' —kon;j +j + 3k

>

Solution : Given a =i — 3 —k and b=3i— :1 -3k

~

Scalar projection of Z on E: i
B
_(f—]—ﬁ)(3f+1+312) _3-1-3 -1
B F+17+3 Jio V19
ap| b

Vector Projection of Z on f; = o5 .
bl ) Ib

_( -1 ){ 3i+j+3k ]

V19 ) \J3 + 2+ 3

_ oL (3i+je3k) _ (32§ 3k
Jio( V19 19 19 19

ASSIGNMENTS

B B ]

1. a,b,c are there rutually perpendicular vectors of the same magnitude prove that (

- = =

inclined in the vectors a.b & ¢ -

-

» —_ A A - -2 A ~ ~
2.  Find the scalar and vector projection of a on b where a =i—j—k and b=i+j+3k

3. Find the angle between the vector a = —i+ ] 2k & b=i+ 2}—ﬁ

Vector Product or Cross Product

a+ b+ Z) is equally

2 - - - - . i - - T
The vector product of two vectors 3 and p denoted by 3 x p isdefined asthevector 3 x b =|a || b |

g A #, i i . s o -
sin® . n where n is the unit vector perpendicular to both 2 and p and O is the angle from 5 and b such that 3

and p and A are the right handed system.
Angle between two vectors :
Let O be the angle between 3 and p .The 3 x p = (absin®) f,
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where |2 |=aand p =b
o |a %b|=(absin®) || = ab sin®
[ 102]=1]

X — —
absinO@=|, x p |

- — ]_) B)|
ax
sin():laxm = - -
ab lal[b|
- =
|ax b

O=sin!' 1 5 =S
[allb]

Unit vector perpendicular to two vectors :
ioac —$N% . ~ - £ . ~ ‘
Clearly ( 4 x b )isavector, perpendicular to each one of the vector 3 and b , so aunit vector n perpendicular

- -
. = = A P ~ ax b
to each one of the vector 3 and p isgivenby n = - —
|ax b
Properties of vector product :
(1) Vector product is not commutative
3 =y e
1.C. 3 X bib)( a
.. - - . - = - =
(i1) Forany vecrors 3 and p ie.(a X b)=—(b X a)

(iii)) For any scalar m prove that (m—; ) % E) = m(’; X B’ ) = Z X (mf; )
(iv) For any vectors :E) —2 present ;) X (E 4 —: ) :(—; xE’ )+ (;) x—g)

., - 5 = o - - - - - -
(v) Forany three vectors 3 ,b,¢ axX(b—c)=(axb)—(axc)
vi) The vector product of two parallel or collinear vectors is zero.
p p

.. - . 2 - —
(vii) For any vector 3 is 3 xa = 0

- - - = — - 2
(vii) If 4 x E) = (0.,then 3 = ( or E’ = () or gz and B’ are the parallel or collinear.

(ix) If the vectors 2 and T; are parallel (or collinear) then © = 0 or 180°, sinf = 0
Vector product of orthonomal Triad of unit vectors : 7

Vector products of unit vectors | . J , k from

a right-handed system of mutually perpendicular vectors. (fig.23)

kxji=j==7X k X
Geometrical Interpretation of Vector Product or Cross Product
%

S o — a
Let OA = a and OB:E B "
Then a xb=(a||b|sin6) { 5

b d - ) — b _b>
=la|(blsin®) f=]a|BM|
- - -
Now |a xb|=|a|BM] L oFM A

= Area of the parallelogram with sides a and b . (fig 24) Fig. -24




o - i e
Therefore, @ x b is a vector whose magnitude is equal to area of the parallelogram with sides a and b .

l —_— —_—
From this it can be concluded that Area of AABC = EIAB x AC],
Example - 1: Fmd the area of parallelogram whose adjacent sides are determined by the vectors.

a: 1+2J+3k and h =3i —2.l +k

i
" - = 1 2 % A ~
Solution : We have 3 x p = % =@87-10;+4k)

W =

o

.. Required area = laxbl
= /82 +(~10)2 +42 = 180 =615 sq. units
Example - 2: Find the area of a parallelogram whose diagonals are determined by the vectors.
a=3i+J-2kand b =} -3] +4k

A~

i j k
) X y
Solution : We have ; X B = f 13 4" =(2i-14;-10k)

. ] - -
". Required area= , |4 X p |

1 1 .
=5 J2)? + (=142 +(-10)? = 5 300 =53 sq. units.

ASSIGNMENTS
1. Find the area of the triangle whose adjacant sides are a = i+ 23 +3k &b=-3i— 23 +k
2. Find a unit vector perpendicular to both the vectora =21+ j—k & p =3 — j+3k

3.  Find the angle between the vectors a =2i—j+3k & b=i+ 3j +2k

As the circle is symmetrically situated about both X —axis and Y —axis, the area of the circle
is defined by,

a
A=4 [ Va?—x?dx

x @ o g ¥
=4 |-2-\/a2—-x2 +-sin 1;
0

w
2,—= naz.
2

a

= 4%sin'11 =24
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CHAPTER -5

IDIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS

DEFINITION:-An equation containing an independent variable (x), dependent variable (y)
and differential co-efficients of dependent variable with respect to independent variable is
called a differential equation.

For distance,

], &

— =sinx +cosx
&
2 =, = x3
2. dx+2xy
7 (d_y)z
3. yEE—F 1+ =

Are examples of differential equations.

ORDER OF A DIFFERENTIAL EQUATION
The order of a differential equation is the order of the highest order derivative
appearing in the equation.

. d? d
Example:-In the equation, ﬁ +3 ﬁ + 2y = e*,
The order of highest order derivative is 2. So, it is a differential equation of order 2.

DEGREE OF A DIFFERENTIAL EQUATION

The degree of a differential equation is the integral power of the highest order
derivative occurring in the differential equation, after the equation has been expressed in a
form free from radicals and fractions.

3 2
Example:-Consider the differential equation Z—;}; ] (Z—z) -4y =0

In this equation the power of highest order derivative is 1.So, it is a differential equation of
degree 1.

Example:-Find the order and degree of the differential equation
213/
an\2] 72 _ o &y
[1 3 (H) ] =K dx?
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Solution:- By squaring both sides, the given differential equation can be written as
3

2. 2 2
- o Y| =
K (dxz) [1 & (d.x) ] =0
The order of highest order derivative is 2.So0, its order is 2.
Also, the power of the highest order derivative is 2.So0, its degree is 2.

FORMATION OF A DIFFERENTIAL EQUATION
An ordinary differential equation is formed by eliminating certain arbitrary constants
from a relation in the independent variable, dependent variable and constants.

Example:-Form the differential equation of the family of curves  y = asin(bx + c), a and
¢ being parameters.

Solution:-We have y = a sin(bx + ¢) -------—--—-- (1)

Differentiating (1) w.r.t. x, we get
Z—z = ab cos(bx + ¢) (2)
Differentiating (2) w.r.t. x, we get
32732' = —ab? sin(bx + ¢) 3)
Using (1) and (3), we get
2

L N T
T by =0
This is the required differential equation.

Example:-Form the differential equation by eliminating the arbitrary
constant in y = Atan™'x.

Solution:-We have, y = Atan™'x (D

Differentiating (1) w.r.t. x, we get
dy A
dx  14x2
Using (1) and (2), we get
. ¥
dx (1+x2)tan™1x
% (1.4 xz)tan‘]x% =y

This is the required differential equation.

SOLUTION OF A DIFFERENTIAL EQUATION
A solution of a differential equation is a relation (likey = f(x) or f(x,y) =
0)between the variables which satisfies the given differential equation.

GENERAL SOLUTION
The general solution of a differential equation is that in which the number of
arbitrary constants is equal to the order of the differential equation.

a7




PARTICULAR SOLUTION
A particular solution is that which can be obtained from the general solution by
giving particular values to the arbitrary constants.

SOLUTION OF FIRST ORDDER AND FIRST DEGREE DIFFERENTIAL
EQUATIONS

We shall discuss some special methods to obtain the general solution of a first order
and first degree differential equation.

1. Separation of variables
2. Linear Differential Equations
3. Exact Differential Equations

SEPARATION OF VARIABLES

If in a first order and first degree differential equation, it is possible to separate all
functions of x and dx on one side, and all functions of y and dy on the other side of the
equation, then the variables are said to be separable.Thus the general form of such an

equation is f(y)dy = g(x)dx
Then, Integrating both sides, we get

[f()dy = [g(x)dx + C as its solution.

Example:-Obtain the general solution of the differential equation
9y +4x=0

Solution:- We have, 9y3—i +4x =0
dy _ o
= 9}/5 = —4x
=9y dy = —4x dx
Integrating both sides, we get
9 [ydy = —4 [ xdx

=

N o

o _74x2 +K
=9y? = —4x?+C (Where C=2K)

= 4x%2+9y? =C
This is the required solution
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LINEAR DIFFERENTIAL EQUATIONS

A differential equation is said to be linear, if the dependent variable and its differential co-
efficients occurring in the equation are of first degree only and are not multiplied together.
The general form of a linear differential equation of the first order is

dy —
H+Py—Qp -------------- (])

Where P and Q are functions of x.

To solve linear differential equation of the form (1),
at first find the Integrating factor = ) e — (2)

It is important to remember that

[P =l Pux
Then, the general solution of the differential equation (1) is

y.(I.LF)=[Q.(I.F)dx+C  -—--mmeeemmmeeem- (3)
Example:-Solve Z—i’ + ysecx = tanx
Solution:-The given differential equation is
%+(secx)y=tanx ----------------- (1)
This is a linear differential equation of the form
%+ Py =(Q ,where P =secxand Q = tanx
LF= eJ Prdx — pJsecxdx _glIn(secx+tanx)

So, LF=secx +tanx

. The general solution of the equation (1) is
y.(I.F) = [Q(.F)dx + C

= y (secx +tanx) = [tanx (secx +tanx)dx + C
=5 y (secx +tanx) = [(tanx secx + tan’x)dx + C
= y (secx +tanx) = [(tanx secx + sec’x — 1)dx + C
=5 y(secx +tanx) =secx +tanx —x +C
This is the required solution.

Example:-Solve: (1 + x?) Z—i +2xy —4x%? =0

Solution:-The given differential equation can be written as
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d
(1+x2)5¥+ 2xy = 4x?
Ay, 2 4x?
ax T 14z Y T 1exz

(1)

. 2 d
This is a linear equation of the form d—i +Py=4Q,

Where P = zxz and Q = 4x22
1+x 1+x
We have, LF = eJ Prdx — el2x/(1+x%)dx _ oIn(142?) = 1 4 2 )

~The general solution of the given differential equation (1) is
y.(I.F) = [Q.(I.F)dx + C
= yA+x) =2 A +x2)dx+C
= y(l+x*)=4[x%dx+C
=  y(1+x?) :§x3+(}
This is the required solution

EXACT DIFFERENTIAL EQUATIONS

DEFINITION:- A differential equation of the form
aN

M(x,y)dx + N(x,y)dy = 0is said to be exact if 2—1: ==

METHOD OF SOLUTION:-

The general solution of an exact differentia equation Mdx + Ndy = 0 is
fde 2 f(terms of N not containing x)dy = C,

(y=constant)

s aM AN
Provided — = —
ay ox

Example:- Solve;(x? — 4xy — 2y?)dx + (y? — 4xy — 2x?)dy = 0.
Solution:-The given differential equation is of the form Mdx + Ndy = 0.

Where, M = x? — 4xy — 2y? and N = y? — 4xy — 2x?

oM oN
Wehavea— —4x — 4y = o
; aM _ ON " o . _
Since o x50 the given differential equation is exact.

The general solution of the given exact differential equation is
fde + f(terms of N free fromx)dy =C

(y=constant)
= J(x? = 4xy — 2y®)dx + [y*dy =C
(y=constant)




x322 3
= ——2x
3

3 3

= x*—6x’y—6xy*+y*=
This is the required solution.

Example:- Solve;(x? — ay)dx = (ax — y?)dy
Solution:-The given differential equation can be written as

(x* —ay)dx + (y* —ax)dy = 0 --------mmmme- (1)
Which is of the form Mdx + Ndy = 0,
Where,M = x? —ay and N = y? — ax.

We have X = —gand & = —q
) 3 ox
Since (;—A; = 3—]:, the given equation (1) is exact.
= The solution of (1) is [(x? — ay)dx + [y*dy =C

(y=constant)
23 3

Yy _
=>3 axy+3—C

= x3 —3axy +y* = C,
Which is the required solution.

Example:- Solve; ye*¥dx + (xe™ + 2y)dy = 0.
Solution:- The given differential equation is ye*dx + (xe*” + 2y)dy = 0,

Which is of the form Mdx + Ndy = 0.
Where,M = ye®” and N = xe*®” + 2y

am aN
We have o e* + xye™ = —

ax

So the given equation is exact and its solution is
[ye*¥dx + [ 2ydy = C.

(y=constant)

2>eV+y?=C

Example:- Solve; (3x? + 6xy?)dx + (6x%y + 4y3)dy = 0

Solution:- The given equation is of the form Mdx + Ndy = 0,
Where,M = 3x% + 6xy? and N = 6x%y + 4y3

oM aN
We have — = 12xy = =

ay a
So the given equation is exact and its solution is
J(3x% + 6xy?)dx + [(4y*)dy = C
(y=constant)
C e 4
= — 7 A ik -
3 +2x y +4y C

=x34+3x%2y2+y*=C
This is the required solution.
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Co-Ordinate System

In geometry, a coordinate system is a system which uses one or more numbers,
or coordinates, to uniquely determine the position of a point. The order of the coordinates is
significant and they are sometimes identified by their position in an ordered tuple and sometimes
by a letter, as in "the x coordinate".

Number Line

The simplest example of a coordinate system is the identification of points on a line with real
numbers using the number line. In this system, an arbitrary point O (theorigin) is chosen on a
given line. The coordinate of a point P is defined as the signed distance from O to P, where the
signed distance is the distance taken as positive or negative depending on which side of the
line P lies. Each point is given a unique coordinate and each real number is the coordinate of a
unique poinl.[4J

————

—4

ANRE A BN S S S s s o . S S S s s Swc amn ae
9-8-76-5-4-3-2-1(012314567289

Cartesian Co-ordinate System

In the plane, two perpendicular lines are chosen and the coordinates of a point are taken to be
the signed distances to the lines.

<V

(=1.5,-2.5)4-3




Three Dimension

In three dimensions, three perpendicular planes are chosen and the three coordinates of a point
are the signed distances to each of the planes.

(V4
Zi
17" "2 e
/ / | ! B, ]
Lola i Tt
“ + :
' | 2 lz i
| | i ;
'71 - 'X,__\_.j\k Y
|X/ £ 7 y ik
- |
/,/ Y

Choosing a Cartesian coordinate system for a three-dimensional space means choosing an
ordered triplet of lines (axes) that are pair-wise perpendicular, have a single unit of length for all
three axes and have an orientation for each axis. As in the two-dimensional case, each axis
becomes a number line. The coordinates of a point P are obtained by drawing a line

through P perpendicular to each coordinate axis, and reading the points where these lines meet
the axes as three numbers of these number lines.

Alternatively, the coordinates of a point P can also be taken as the (signed) distances from P to
the three planes defined by the three axes. If the axes are named x, y, and z, then the x-coordinate
is the distance from the plane defined by the yand z axes. The distance is to be taken with the +
or — sign, depending on which of the two half-spaces separated by that plane contains P.

The y and z coordinates can be obtained in the same way from the x—z and x—y planes
respectively.

The Cartesian coordinates of a point are usually written in parentheses and separated by
commas, as in (10, 5) or(3, 5, 7). The origin is often labelled with the capital letter O. In analytic
geometry, unknown or generic coordinates are often denoted by the letters x and y on the plane,
and x, y, and z in three-dimensional space.

The axes of a two-dimensional Cartesian system divide the plane into four infinite regions,
called quadrants, each bounded by two half-axes.

Similarly, a three-dimensional Cartesian system defines a division of space into eight regions
or octants, according to the signs of the coordinates of the points. The convention used for
naming a specific octant is to list its signs, e.g. (+ ++) or (—+ —).
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L B

(0, 1)

111 v

Distance between two points

The distance between two points of the plane with Cartesian coordinates (1, ¥1) and (T2, ¥2)
is

d= \/(1‘2 —z1)? + (2 — )%

This is the Cartesian version of Pythagoras' theorem. In three-dimensional space, the distance
between points (Z1, Y1, 21) and (T2, Y2, 22) is

d= /(22— 21)? + (42 — 1)? + (22— )2,

which can be obtained by two consecutive applications of Pythagoras' theorem.

Example :

Prive that the point A(-1,6,6),B(-4,9,6),C(0,7,10) form the vertices of a right angled tringled.
Solution :

By distance formula

AB*=(-4+1)?+(9-6)+(6-6)>2 =9+9=18
BC?=(0+4)?+(7—-92%+(10-6)2 =16 +4+16 =36
AC’=(0+1)*+(7-6)*+(10-6)> =1+1+16=18

Which gives AB? + AC* = 18 + 18 = 36

Hence ABC is a right angled isosceles triangle

54




Derivation Of Distance Formula

Fig

The distance between the point P(xy,y;,2;) and Q(x;,y,,2,) is given by

PQ=+/(%1 — %)% + (01 — ¥2)? + (21, — 23)?
Proof:

Let P'Q be the projection of PQ on the XY plane. PP and . W are parallel. So PP and w
are co-planar. And PP'QQ" is a plane quadrilateral.

Let R be a point on QQ' so that PR || P°Q" .

Since ﬁ lies on the XY plane and PP s perpendicular to this plane , it follow from the
definition of perpendicular geometry to a plane that PP perpendicular P°Q". Similarly QQ"
perpendicular to PP". PR being parallel to P°Q". It follow from plane geometry that PP°Q'R is a
rectangle. So PR =P'Q". and

< PRQ 1is aright angle.
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P" and Q" being the projection of point P(xy, y4,2;) and Q(x3,¥,,2,) on the XY plane, they are
given by P*(xq,y1,0) and Q(x5, y,,0) . Therefore by the distance formula in the geometry of
R?.

PQ =y (1 — %2)? + (1 — ¥2)?

In the rectangle PP"Q'R

PP=CR

Therefore QR = |z, — z; |

In the right angled tringle PRQ , PQ? = PR? + RQ?

=@ — 5+ O~ Y — B

PQ:\/(xl = x)2+ (1 — ¥2)° + (21 — 2)?

Derive the division formula

Fig
If R(x,y,z) divides the segment joining P(xy, y1,2;) and Q(x3,y,,2,) internally in ratiom : nie
PR m mx,+nx my;+n mz,+nz
QR n m+n m+n m+n
Proof :

Let P, Q" and R be the feet of the perpendicular from P, Q, R on the xy plane. Being
perpendicular on the same plane =2 <Q—Q> £ e parallel lines. Since these parallel lines have a

common transversal % they are co-planar. Let M and N be points on i and <Q—Q> such that £
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perpendicular £ and s perpendicular 53 . Since P",R" and Q" are common to the xy-plane and

plane of © 5—3 x they must collinear because two plane intersect along a line.
It follows from the definition of the perpendicular to a plane that < PP'R’, < RR'Q" and <
QQ'R’ are all right angles. It now follows from plane geometry that PP"R'M and RR* Q"N are
rectangles. Also triangles RPM and QRN are similar

m PR  PM PR
Hence — = — = — = —
n RQ RN RQ

(+ PM = PR and RN = R'Q’ in the corresponding rectangle)
Thus the point R" divides the segment P'Q" internally in the ration m : n.

P, R" and Q" being projection of P(xy,y1,21) . R(X,y,z) and Q(x,,y,,2,) on the xy plane have
co-ordinate respectively (x1,y;,0) ,(X,y,0), (x2,¥2,0) .

If we restrict our consideration to the Xy plane only we can regard the point P",R*,Q" as having
coordinate (xq, Y1) (X,y), (x2,¥2) .

Thus on the xy-plane the point R*(X,y) divides the segment joining P(x;,y;) and Q(x3,y>)

3 5 ; : mx,+nx my,+n
internally in the ratio given by x = ——2——1  y = 2220
m+n m+n

Simillarly considering projection of P,Q,R on on another co-ordinate plane say YZ plane we can

my,+ny mz,+nz
prove y =——=and z = ——
m+n m+n
mx,+nx my,+ny mz,+nz
Thus we have x = ———* | y=—2—landz=—2—
m+n m+n m+n

External Division Formula

If R(x,y,z) devides the segment PQ joining P(xy,y;,2;) and Q(x,,¥,,2,) externally in ratio m :

o PR m mx,—nx my,—-n mz,—nz
nie— = Zthen x = 21y V27N g, - TE2TRA
QR n m-n m-n m-n
Example :

Find the ratio in which the line segment joining points (4,3,2) and (1,2,-3) is divided by the co-
ordinate planes.

Solution :

Let the given points be denoted by A(4,3.2) and B(1,2,-3). If Q is the point where the line
k+4 2k+3 —3k+2

through A and B is met by xy-plane, then the co-ordinate of Q are (m,m,w

), since Q
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devides AB in a ratio k:1 for some real value k. But being a point on the xy-plane, its z co-
ordinate is zero.

Similarly AB meets the xy-plane has its y-co-ordinate zero. Hence equating the y-co-ordinate to
zero we get

2k+3
k+1

3. s ; : ;
ork= — ;e the xz plane devides in a ratio 3:2. Equating x co-ordinate to zero we

Ie yz-plane divides AB externally in a ratio 4:1.

Direction Cosine and Direction Ratio

Fig

Let L be a line in space. Consider a ray R parallel to L. with vortex at origin. ( R can be taken as

either — or — ). let a, B8,y be the inclination between the rayRand — , —= , —
oP = OP ox 'ov oz

respectively. Them we define the direction cosine of L as cos a, cos f3, cosy.
Usually direction cosine of a line are denoted as <l,m,n>. for the above line 1 = cos @, m = cos 3,
n=cosy.

In the definition of the direction cosine of L the ray can be either e o Therefore if cos a,

cos f3, cos y are the direction cosine of L then cos(m — ), cos(m — ), cos(m — y) can also be
considered as direction cosine of L . The two set of direction cosine corresponds to the two
opposite direction of a line L.




The direction cosine of the ray 57 are cos a, €os B, cosy and of the ray op are cos(m — ),
cos(m — B), cos(m —y).
Property Of Direction Cosine
A. Let O bethe origin and direction cosine of 5 be I,m,n. If OP =r and P has a co-ordinate
(X,y,z) then
x=Ir, y=mr,Z=nt.

B. If I,m,n are direction cosines of a line then
P+m?+n?2=1

Direction Ratio
Let I,m,n be the direction cosine of the line such that none of the direction cosine is zero.

If a,b,c are non zero real number such that then a,b,c are the direction ratio of the

2l

- -
= —=
line
Exceptionalcases:
1. If one of the direction cosine of a line L , say I =0 and m # 0, n # 0 then direction ration
: b
of L are given by (0,b,c) where = % abd b and ¢ are nonzero real number.
2. If two direction cosine are zero | = m = 0 and n # 0O then obviously n = +1 and the
direction ratio are (0,0,c) ,c €R, c # 0.
Finding Direction Cosine from Direction Ratio
If a,b,c are direction ration of a line then its direction cosine are given by

a b ¢

lz=———— m=——— = —————
tva?+b?+c? - +vVa?+b?+c? +Va?+b?+c?

(x3—xq) _ e=y1) _ (22—7y)
cosa cosf3 cosy

Direction Ratio of the line segment joining two points :

Angle between two lines with given Direction ratio

If L; and L, are not parallel lines having direction cosine <l;, m; ,n;> and <l,, m,,n,> and @
is the measure of angle between them then cos 8 = [;l; + mym, + nyn,
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Proof :

Consider the ray = and — such that — |[L; and = || L, .— and — are taken in such a
oP 0Q opP 0Q opP 0Q

way that m<POQ = 6 and direction cosine of P and O—Q> are respectively <l,,m; ,n,> and
<l,, my,ny>. Let P andQ have a co-ordinate respectively ( Xy, ¥1,2;) and (x5, ¥, ,23)

O0P?4+0Q*-PQ?

In AOPQ cos 8 =
20P. 0Q

(xR 4yE+zd)+ (B +yE+22)—{(x1= %2) 2+ (y1— ¥2)? +(21 - 2,)?

2 OP. 0Q
X1X2+Y1V2+212 Xy X ViV Zy z
=""or.00  —or oot or ogt op oo ~hlztmumatmn,

Note that L, and L, is perpendicular then cos 6 = 0.

1. Thus the line with direction cosine <[y, m; ,n,> and <l,, m, ,n,> are perpendicular only
lf 1112 + mlmz -+ n1n2 = 0.
2. If<aq, by, c;> and <a,, b, , c,> are direction ratio of L, and L, and 8 measures the

angle between them then
aya,+byby,+c i,

cos @ =
i\[af+bf+c,2 \[a§+b§+c§

Lines with direction ratio <a4, b, , ¢;> and <a,, b, , c,> are perpendicular if and only if a,a, +
b1b2 + C1C2 = 0.

3. Since parallel lines have same direction cosine it follows from the definition of direction
ratio that lines with direction ratio <a4, b, , ¢;> and <a,, b, , c;> are parallel if and only if
a, by GO
a b o

Example :

Find the direction cosine of the line which is perpendicular to the lines whose direction ratios are

<1,-2,3> and <2.,2,1>
Solution :

Let 1, m, n be the direction cosine of the line which is perpendicular to the given lines. Then we
have

l.1+m.(-2)4n.3 =0 and 1.2+m.2+n.1 =0

By cross multiplication we have
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Or, —=—=%=k thenl = —8k; m = 5k:n = 6k
P+m?+n?=1 =>(64+25+36)k*=1

1 1
Ock® = — => k= —
125 5vV5
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Plane

In mathematics, a plane is a flat, two-dimensional surface. A plane is the two-dimensional
analogue of a point (zero-dimensions), a line (one-dimension) and a solid (three-dimensions).
Planes can arise as subspaces of some higher-dimensional space, as with the walls of a room, or
they may enjoy an independent existence in their own right,

NN

Properties

The following statements hold in three-dimensional Euclidean space but not in higher
dimensions, though they have higher-dimensional analogues:

o Two planes are either parallel or they intersect in a line.

e A line is either parallel to a plane, intersects it at a single point, or is contained in the plane.
e Two lines perpendicular to the same plane must be parallel to each other.

« Two planes perpendicular to the same line must be parallel to each other.

Point-normal form and general form of the equation of a plane

In a manner analogous to the way lines in a two-dimensional space are described using a point-
slope form for their equations, planes in a three dimensional space have a natural description
using a point in the plane and a vector (the normal vector) to indicate its "inclination".

Specifically, let To be the position vector of some point Py = (0, Y0, 20), and

let & = (@, b, €) be a nonzero vector. The plane determined by this point and vector consists of
those points PP, with position vector T, such that the vector drawn from FPowo Pis
perpendicular to Il. Recalling that two vectors are perpendicular if and only if their dot product
is zero, it follows that the desired plane can be described as the set of all points I such that

n-(r—rg)=0.

(The dot here means a dot product, not scalar multiplication.) Expanded this becomes
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a(x — o) + by — yo) + (2 — z9) =0,

which is the point-normal form of the equation of a plane.” This is just a linear
equation:

ar +by + cz +d =0, where d = —(axp + byo + c20).

Conversely, it is easily shown that if a, b, ¢ and d are constants and a, b, and ¢ are
not all zero, then the graph of the equation

ar + by +cz+d =0,

is a plane having the vector ! = (a- b, C) as a normal."! This familiar equation
for a plane is called the general form of the equation of the plane.”

Example :

Find the equation of the plane through the point (1,3,4), (2,1,-1) and (1,-4,3).
Ans :

Any plane passing through (1,3.4) is given by

A(x-1) + B(y-3) + C(z-4) =0 ....(1)

Where A,B,C are direction ratio of the normal to the plane.
Since the passes through(2,1,-1) and (1,-4,3) we have
A(2-1) +B(1-3)+C(-1-4) =0

Or A-2B-5C=0 .....(1)

A(1-1)+B(-4-3)+C(3-4) =0

Or A.0 + B(-7)+C(-1) =0

Or-7B-C=0 .....(2)

By Type equation here.cross multiplication we get

A _ B _ c
(=2)(=D=(=5)(=7)  (=5)0-(1)(=1) = 1(=7)-0.(-2)
O gEe B

-33 1 -7

Hence the direction ratio of the normal to the plane are 33,-1,7 and putting these values in (1),
the equation of the required plane is

33(x-1)-1(y-3)+7(z-4) = 0
Or33x—y+7z-58 =0
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Equation Of plane in normal form

Fig
Let p be the length of the perpendicular ON from the origin on the plane and let <I,m,n> be its
direction cosines. Then the co-ordinate of the foot of the perpendicular N are (Ip,mp,np).

If P(x.y,z) be any point on the plane then the direction ratio of NP are (x-lp,y-mp,z-np). Since
ON is perpendicular to the plane it is also perpendicular to NP

Hence

L(x —1Ip) + m(y — mp)+n(z —np) =0
Or, Ix +my+nz = (I + m? + n?)p
Or Ix+my+nz =p

Example :

Obtain the normal form of equation of the plane 3x+2y+6z+1 = 0 and find the direction
cosine and length of the perpendicular from the origin to this plane.

Solution :

The direction ratios of the normal to the plane are <3,2,6> and hence the direction cosines
are

3 2 6
+v/9+4+36 ' +V/9+4+36° +V9+4+36

Length of the perpendicular from origin is

-D -1 1
T +VAZEBZ4C2 V944436 7

(~~ D is positive we choose negative before the radical sign to makep > 0

The equation of plane in normal form is

£ Xt = I J Z:F = =
-VAZ+B2+(2 —VAZ+B2+(2 y —VAZ+B2+(2 -VAZ+B2+C2
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3 2 6 1
Or_—7x+ _—7y+ _—72+_—7—0

Distance Of a point from a plane

Fig

Let P(x1, ¥1,2,) be a given point and Ax+By+Cz+D = 0 be the equation of a given plane. Draw
QN normal to the plane at Q and PM perpenticular to QN. Join PQ .If R be the foot of the
perpentcular drawn from the point Pto the given plane, then

D= PR=QM= projection of PQ on W . W being normal to the given plane Ax+By+Cz+D =0
the direction ratio of QTV are <A,B,C> and the direction cosines are

A B c )
+VAZ+BZ+C2’ +VAZ+BZ+C2’ +VAZ+B2+(?

(

—  cmm—

~ d = projection of line segment PQ on QN . QN

A 5 y
= e (o — @) + e (30 — B) + e (20— 7)

_Alxo— a)+B(yo—B)+C(z0-Y)
- +VAZ+B2+C2

_Axg+Byo+Czy—(Aa+Bf+Cy)
h +VAZ+B2+(2

Now (a, B,y) lies on the given plane (Aa + B + Cy + D = 0 hence (Aa + B + Cy = =D

Thus

_ Axy+Byy+Czy+D)

+VAZ+B21C2

The sign of the denominator chosen accordingly so as to make the whole quantity positive. In
particular the distance of the plane from the origin is given by

D
+VA2+B2+C2
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Example
Find the distance d from the point P(7,5,1) to the plane 9x+3y-6z-2 =0
Solution :

Let R be any point of the plane. The scalar projection of vector RP on a vector perpendicular to
the plane gives the required distance. The scalar projection is obtained by taking the dot project
of RP and a unit vector normal to the plane. The point (1,0,0) is in the plane and using this point
for R, we have RP = 6i+5j+k

2i+3j—6k . ¢
N = + =25 a unit vector normal to the plane. Hence
Y 12+15-6 21 ; g ; s
N..RP:=% = iT we choose the ambiguous sign + in order to have a positive result.

Thus we getd = 3.

Dihedral angle(Angle Between two planes)
Given two intersecting planes described by
I :aiz+by+ecz+di =0 4
Iy apx + by + oz +dy =0
the dihedral angle between them is defined to be the angle ¢v between their normal directions:

ny-Ng aiaz + biby 4 c1cz
allftal  \fa? + 82 + 3yja3 + B3 + 3

COst¥ =

Example : Find the angle 8 between the plane 4x-y+8z+7 =0 and x + 2y-2z+5 =0
Solution :
The angle between two plane is equal to the angle between their normals. The vectors

4i—j+8k i+2j-2k
Ny = —2 N, = ==
9 3
Are unit vectors normal to the given planes. The dot product yield
14

cosf@ = N;.N, = —= o 0 =121°

Equation Of plane passing through three given point
Let (x1,V1,21) , (X2, ¥2,23) and (x3, Y3, Z3) be three given points and the required plane be
Ax+By+Cz+D =0.......cvunenenn.e. (1)




Since it passes through (x4, ¥4, 2;) we have

Ax; +By;+Cz, =0 ......... (2)

Subtracting eq (2) from (1) we have

AX-x)+B(y-y1)+C(z-21) =0............. (3)

Since this plane also passes through (x5, y,, z3) and (x3, y3, Z23) we have
A —x)+B (2 —y1) + C(z,— 2,) =0

And

Ay — %) +B (3= ¥1) + C(23— 25) = 0 cvisinsiins (5)

Eliminating A,B, C from eq (3),(4) and (5) we get

X=Xy Y—Y1 Z—Z
Xo—=X1 Y2—="Y1 22— 2
X3—X1 Y3— V1 23— 7

Which is the equation of the plane

Corollary 1:

If the plane makes the intercepts a,b,c on the co-ordinate axes 0X,0Y,0Z respectively then the
plane passes through the point (a,0,0) , (0.b,0) and (0,0,c). Hence the equation (6) gives

x—=a =0 z~=10 x—a y z
0—a b—-0 0—-0|=| —a b O0|=bc(x-a)+yac+zab=o0
0—a 0-—-0 c¢c—-0 —-a 0 c

Dividing both side by abc we get (x;—a) o % + f =0

4+ x4+ -=1

Example :

Find the equation of the plane determined by the point P, (2,3,7), P,(2,3,7), P5(2,3,7)
Solution :

A vector which is perpendicular to two sides of tringle P; P, P; is normal to the plane of the
tringle. To find the vector we write

PP, =3i+2j—5k P, Py=i+j—k N=Ai+Bj+Ck
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The coeff A,B,C are to be found so that N is perpendicular to each of the vector Thus
N. PP, =3A+2B-5C =0
N. PP; = A+B-C=0

These equation gives A = 3C and B = -2C. Choosing C =1 we have N = 3i-2j+k. Hence tha
plane 3x-2y+z+D = 0 is normal to N and passing through the points if D =-7

Hence the equation is 3x-2y+z-7 = 0.

Alternate :

X=X Y= Z—2 X—2 "Y=8 Z=T7 X2 Y3 Z=T
X2—=X%X1 Y2—=N1 Z22—%|=|5-2 5-3 2-7| == 3 2 -5 1=0
X3 —X1 Yz3—=V1 Z3— %4 3—2 4-3 6-7 1 1 =1

=(x-2)(-2+5)-(y-3)(-3+5)+(z-7)(3-2) =0
= 3x-6-2y+6+2-7=0

Or 3x -2y+z-7=0

Exercise

1. Write the equation of the plane perpendicular to N = 2i-3j+5k and passing through the

point (2,1,3) Ans 2x-
3y+5z2-6 =0

2. Parallel to the plane 3x-2y-4z = 5 and passing through (2,1,-3) Ans 3x-2y-4z-
16=0

3. Passing through the (3,-2,-1)(-2,4,1)(5,2,3) Ans 2x+3y-4z-4 =0

4. Find the perpendicular distance from 2x-y+2z+3 =0 (1,0,3) Ans :%
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Find the perpendicular distance from 4x-2y+z-2 =0 (-1,2,1) Ans :%

Find the cosine of the acute angle between each pair of plane 2x+2y+z-5 = 0, 3x-
2y+6z+5 =0

8
Ans : —
21

Find the cosine of the acute angle between each pair of plane 4x-8y+z-3 = 0, 2x+4y-4z+3
=0

14
Ans : —
2

7




Sphere

A sphere (from Greek ooaipa — sphaira, "globe, ball"™) is a perfectly

round geometrical and circular object in three-dimensional space that resembles the shape of a
completely round ball. Like a circle, which, in geometric contexts, is in two dimensions, a sphere
is defined mathematically as the set of points that are all the same distance r from a given point
in three-dimensional space. This distance r is the radius of the sphere, and the given point is

the center of the sphere. The maximum straight distance through the sphere passes through the
center and is thus twice the radius; it is the diameter.

Equation Of a Sphere

Fig

Let the centre of the sphere be the point (a,b,c) and the radius of be r(x,y,z) be any point
on the sphere. By distance formula

CPl=(x—-a)’+(y—-b)?+(z—c)?
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Or,(x—a)’+(y—b)’+(z—c)¢=1r%...(1)

Is the required equation.

In particular , if instead of any point (a,b,c) the centre of the sphere is the origin
(0,0,0) and redius r then from (1), we obtain by putting a=b=c=0 , the equation of the sphere as

x2+y2+2z2=1% ....(Q2

Since the equation (1) can be further be written as
x2+y2+2%2—-2ax —2by —2cz+a*+b*+c?=1r?
Or, x> +y?+2z%—-2ax—2by—2cz+d= 0
Where d = a? + b? + ¢? —r?

We conclude that

(1) The equation of a sphere is of second order in x,y,z
(i)  The coefficient of x?,y%and z* are equal
(iii)  There is no term containing Xy,yz, or zX

General Equation :

Consider the general equation of second degree in x.,y,z
x2+y2+z2242ux+2vy+2wz+d =0 ....(3)
This can be written as

(x+w)?+(@+v)l+@Z+w)il=u+v2+w?—d

Which on comparison with eq (1) implies that the equation represent a sphere with centre(-u,-v,-

w) and radius = Vu? + v2 + w2 — d
In general the equation

x2+y?2+22+Dx+Ey+Fz+d=0 ...(@4)




. D E F . D2  E2  F?
Represent a sphere with centre (— S E) and radius = \/T Sl o G

Since equation(3) contains four arbitrary constants, we need four non-coplanar points to
determine a sphere uniquely.

Sphere through four non-coplanar points

Let A(xq,¥1,21), B(x3,¥5,25), C(x3, Y3, 23)and D(x4, V4, 24, ) be four given non-coplannar
points and the equation of the sphere be

x2+y2+ 22+ 2ux+2vy+2wz+d= 0

Since the sphere passes through four given points the co-ordinate of the given points satisfy the
equation of the sphere and hence , we have

x2+y2+ 2% 4 2ux; + 2vy, + 2wz, +d = 0
x2+y?+ 2%+ 2ux, + 2vy, + 2wz, +d = 0
x2 +y%+ 2% + 2uxg + 2vy; + 2wzz; +d = 0
x2 4+ y? 4+ 2% + 2ux, + 2vy, + 2wz, +d = 0

Solving these four simultaneous equation for u,v,w and d we obtain the equation of the required
sphere.

Example

Find the equation of the sphere through points (0,0,0), (0,1,-1) and (1,2,3). Locate its centre and
find the radius?

Solution :
Let the required equstion of the sphere be
x2+y?+ 22+ 2ux+2vy+2wz+d= 0

It passes through (0,0,0), (0,1,-1),(-1,2,0) and (1,2,3)

1+4-2u+4v+d =0




or,2u—4v=>5...... (3)

14+4+9+2u+4v+ow+d = ()

or, u+2v+3w =-7 ...... (4)
: ; 15 25 11
Solving the above equation we getu=—— , v=—— w=——
© © 14 14 14

Hence by substituting the above equation the required eq

15 25 11
xRy Rt — Xm0

15 25 11

Its centre at (— \ A
14 14 14

And the radius = \/(—1—5)2 4 (_ E)z + (_ E)Z _ Y71

14 14

Equation of a sphere on a given diameter

Fig

Let A(xy,¥1,21), B(x3,¥2,2,) be the end points of a diameter of the sphere. If we consider
P(x,y,z) any point on the sphere,then m<APB = 90° ie. AP is perpendicular to . PB. Since the

direction ratio of AP and PB are <X-X1, ¥-Y1,Z — z1 > and <x-X;, y-Y,,Z — Z, > respectively
by condition of perpenticularity we have

(x-x1) (x-X2) +(y-y1)(y = ¥2)+(2-2y) (2-23) = 0
Example :

Deduce the equation of the sphere described on line joining the points (2,-1,4) and (-2,2,-2) as

diameter.
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Solution :

Let P(x,y.z) be any point on the sphere having A (x4, y1,21), B(x3, ¥2, Z,) as ends of diameter.
Then AP and BP are at right angle.

Now the direction ratio are (x-x;), ( y-¥1) , ( z-2;)

And those of BP are (x-x3), (y — ¥3), (z-2,)

Hence (x-x1) (X-x3) +( y-y1)(y — ¥2)+( z-2;) (z-2z;) = 0 is the required equation.
The equation of the required sphere is

(x-2)(x+2) +(y+1)(y+2)+(z-4)(z+2) =0

Or x? +y? + z%-y-2z-14=0

Problems

1. Find the equation of the sphere through the point (2,0,1), (1.-5.-1), (0,-2,3) and (4,-1,2).
Also find its centre and radius
(Ans : x% + y? 4 z%-4x+6y-22+5 = 0; (2.-3.-1); 3)

2. Obtain the equation of the sphere passing through the origin and the points (a,0,0), (0,b,0)
and (0,0,c).
(Ans:x*+y?’+z*—ax—by—cz=0)

3. Find the equation of the sphere whose diameter is the line joining the origin to the point
(2,-2,4)
(Ans x% + y? + z2-2x+2y-42=0)




