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CHAPTER -1
TRIGONOMETRY

COMPOUND ANGLES

INTRODUCTION :

The word Trigonometry is derived from Greek words “Trigonos” and metrons means measurement of
angles in a triangle. This subject was originally devecpaed to solve geometric problems involving trigangles.
The Hindu mathematicians Aryabhatta, Varahmira, Bramhaguptu and Bhaskar have lot of contaribution to
trigonometry . Besides Hindu mathematicians ancient-Greek and Arwric mathematicians also contributed a lot
to this subject. Trigonometry is used in many are as such as science of seismology, designing electrical circuits,
analysing musical tones and studying the occurance of sun spots.

Trigonometric Functions :
Let O be the meausre of any angle measured in radians in counter clockmise sense as show in Fig (1).
Let P(x, y) be any point an the terminal side of angle 0. The distance of P from Y

Q)
Ois OP =r= /x* + y* . the functions defined by sinf = o cosO = * tanO = Y <
=r=4x"+y". Y. 2 o . 5 g \

...(1) are called sine, cosine and tangent functions respectirely. These are called b lO =
Fig

trigonometric functions. It followrs from (1) that sin’0 + cos?0 = 1. Other trigonomatric
functions such as cosecant, secant and cotangent functions are defined as cosecO
r r X

—,secO =—, cotO =
y % y

SIGN OF T-RATIOS :
The student may remember the signs of t-ratios in different quadrant with the help of the diagram

The sign of paricular t-ratio in any quadrant can be remembered by the word ‘‘all-sin-tan-cos’’ or “‘add
sugar to coffee””. What ever is written in a particular quadrant along with its reciprocal is +ve and the rest are
negetive.




Table giving the values of trigonometrical Ratios of angles 0°, 30°, 45°, 60° & 90°

0 0°| 30° 45° 60° 90°
. 1 1| 3
sin® 0 > \/E 5 |
J3 1 I
cos0 1 5 \/5 3 0
6 L
tan 0 NE 1 «/3 oo
RELATED ANGLES :

Definitions : Two angles are said to be complementary angles if their sum is 90° and each angle is said
to be the complement of the other.

Two angles are said to be supplementary if their sum is 180° and each angles is said to be the supplement
of the other.

To Find the T-Ratios of angle (-0) in terms of 0 :
Let OX be the initial line. Let OP be the position of the radius vector after tracing an angle 0 in the
anticlockwise sense which we take as positive sense. (Fig. 2)
Let OP' be the position of the radius vector after tracing (0) in the clockwise sense, which we take as

negative sense. So Z P'OX will be taken as —0. Join PP". Let it meet OX at M.
Now A OPM = AP'OM, £LP'OM=-6
OP'=OP,PM =-PM

A
) P'M -PM ) P
Now sin (—0) = @ = F =—sin O
0

cos (-6) = gl}\)/l %I\lf =cos 6 XM >X

PM _-PM ,
tan (—0) = OM :OiM =—tan O ' P

vY
OP' OP .

cosec (—0) = m = m = —cosec 0 Fig. -2

OP'
sec (-0) = OM = oM - sec O

OM OM
cot (-0) = P'M = PM - —cot 6

To find the T-Ratios of angle (90° — 0) in terms of 6.
Let OPM be a right angled triangle with £ POM =90°, ZOMP =0,
Z OPM =90°-60. (Fig. 3)

) OM
sin (90° —0) = ™M cos® = cosec (90°—-0)=-secO

OP
cos (90° -0) = PM - sin® = sec (90°-0)=cosec6




OM
tan (90° - 0) = opP - cot0 = cot(90°-0)=tan0

To find the T-Ratios of angle (90° + 0) in terms of 6.
Let ZPOX =6 and £ P'OX =90°+6 . Draw PM and P'M' perpendiculars to the X-axis(Fig. 4)
Now A POM = A P'OM'

P'M' = OM and OM' = -PM a
o o B OEOM P
Now sin (90° + 0) = oP _OP - cos 0 o \P
. M' -PM ] p
cos (90 +e):O—P'—_W =—sin O X'<¢ Ml M > X
P'M' OM
tan (90° + 0) = W:W =—cot 0 R
Similarly cosec (90° + 0) = sec 6 Fig. - 4

sec (90° + 0) = — cosec O

and cot (90° + ) =—tan O
To Find the T-Ratios of angle (180° — 0) in terms of 0.

Let OX be the initial line. Let OP be the position of the radius vector after tracing an angle XOP =0
To obtain the angle 180° — 0 let the radius vector start from OX and after revolving through 180° come to
the position OX'. Let it revolve back through an angle 0 in the clockwise direction and come to the
position OP' so that the angle X'OP' is equal in magnitude but opposite in sign to the angle XOP. The
angle XOP'is 180° — 0. (Fig.5)

Draw P'M' and PM perpendicular to X'OX. YA
Now A POM = AP'OM".
OM'=-OM and P'M' = PM P!
Mo c1sge gy PM_PM SN
ow sin ( -0)= oP' _ OP = sin e o0 o
M [0 M
cos ( -0)= oP oP - —COS ’
vY
180° -0 i 0 Fig. -5
tan ( -0)= OM'  —OM = —tan ig. —

Similarly cosec (180° — 0) = cosec 0
sec (180° —0) =—sec O
and cot (180°—-6)=—-cotB
To Find the T-Ratios of angle (180° + 0) in terms of 0.

Let £ POX=6 and £ P'OX=90°+0.(Fig. 6) b i
Now A POM = AP'OM".

OM' =-OM and PM' = -PM P
N s 180° O_M—ﬂ_ in0® X' € b > X

ow sin ( +0)= op' op - —sin M
180° + 6 —%——O—M— 0 3
cos ( +0)= oP op - —COoS
vY'
P'M' -PM
tan (180°+0)= ——=——— =tan 6 Fig.- 6

OM' -OM




Similarly cosec (180° + 0) = cosec 0
sec (180° + 0) = —sec O
and cot (180° + 0) = cot 6.
To Find the T-Ratios of angles (270° + 0) in terms of 0.

The trigonometrical ratios of 270° — 0 and 270° + 0 in terms of those of 0, can be deduced from the above
articles. For example

sin (270° — 0) = sin [180° + (90° — 0)]
= —sin (90° - 0) = —cos O
cos (270° — 0) = cos [180° + (90° - 0)]
=—cos (90°-0)=-sin 6
Similarly sin (270° + 0) = sin [180° + (90° + 0)]
= —sin (90° + 6) =—cos O
cos (270° + 0) = cos [180° + (90° + 0)]
=-¢0s (90°+6) =—(—sinB) =sin O
To Find the T-Ratios of angles (360° + 0) in terms of 0.

We have seen that if n is any integer, the angle n. 360° £ 0 is represented by the same position of the
radius vector as the angle + 0 . Hence the trigonometrical ratios of 360° + 6 are the same as those of + 0.
Thus sin (n. 360° + 0) = sin O
cos (n. 360° +6) =cos 6
sin (n. 360° —0) = sin (-0) =—sin O
and cos (n. 360° — 0) = cos (-0) = cos 6.
Examples :
cos (=720° — 0) = cos (-2 x 360° —0) = cos (-0) =cos O
and tan (1440° + 0) = tan (4 x 360° + 0) =tan O
In general when is any integer, n € Z
(1) sin (nm+0)=(-1)"sinO
(2) cos (nmt+0)=(-1)"cosb
(3) tan(nm+0)=tan® when nis odd integer

4) sin(n—n+9)= (—1)% cos

Z

n+l

(5) cos(n—n+9]= (-1)2 sin®
g

(6) tan(ﬂ +6 ): cot®
b4
EVEN FUNCTION :

A function f(x) is said to be an even function of x, if f{x) satisfies the relation f(—x) = f(x).
Ex. cosx, secx, and all even powers of x i.e, X%, x*, x5...... are even function.
ODD FUNCTION :

A function f{x) is said to be an odd function of x, if f{x) satisfies the relation f{—x) = — f(x).
Ex. sinx, cosec X, tan x, cot x and all odd powers of x i.e, x*, x°, X'...... are odd function.
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Example : Find the values of sin0and tan0if cos 6 = EEY and Olies in the third quadrant.

Solution : We have sin’0 + cos?0 = 1

=sin®=+1-cos’ 0

In third quadrant sin® is negetive, therefore

13¥ -5
sin@=—1-cos?0 =~ 1‘(;) =5

sinf _ =5 < 13 5
cosh 13 —12 12
Example : Find the values of
(i) tan (-900°) (ii) sin 1230°
Solution : (1) tan (-900°) = —tan 900° = — tan (10 x 90° + 0°) = — tan0° = 0

Now tan6 =

1
(i1) sin (1230°) = sin (6 x 180° + 150°) = sin 150° = sin (180° — 30°) = sin 30° = 5

Example : Show that

c0s(90°+0).sec(—0).tan(180°—0) = i —sinf x secO x—tan@ _
sec(360° —0).sin(180° +0) .COt(900 —0) - secH x —sinO x tanO B

) cos(90°+6).sec(=6).tan(180°~6)  —sinBHxsecOHx—tan® _
Solution ;' 360°_8).sin(180°+6) .co(90°—8) ~ secOx—sinOxand

ASSIGNMENT

1. Find the value of cos1°.cos2°..... cos 100°

T 3 7
ale : tan—-tan— - tan—-tan—-tan—-
2. Evaluale : aﬂz a 20 a 5 an2 a >




COMPOUND, MULTIPLE AND SUB-MULTIPLE ANGLES

When an angle formed as the algebric sum of two or more angles is called a compound angles.
Thus A + B and A + B + ¢ are compound angles.

Addition Formulae

When an angle formed as the algebraical sum of two or more angles, it is called a compound angles.
Thus A + B and A + B + C are compound angles.
Addition Formula : N
(i)sin(A+B)=sinA.cos B+cos A.sinB
(i1) cos (A+B)=cos A.cos B-sin A .sinB

tan A + tan B P M
(i) tan (A+B)="7_ 0 A tan B A

Proof : Let the revolving line OM starting from the line OX make an Q T
angle XOM = A and then further move to make. B

Z MON =B, so that Z XON=A+B (Fig. 7) A > X
Let 'P' be any point on the line ON. O R S
Draw PR L OX, PT LOM, TQ L PR and TS L OX

Then £ QPT =90° - £LZPTQ = LQTO = L XOM =A Fig. -7
. We have from A OPR

o RP  QR+PQ TS+PQ
@ sin(A+B)=5=" b = op

TS PQ_TS OT PQ PT

“OP OP OT OP PT OP
=sinA.cosB+cosA.sinB
OR OS-RS OS RS

(i1) cos(A+B)_a)*— OP ~OP OP

OoS QT
~OP OP L Ro=UT]
OS OT QT PT
~ OT OP PT OP
=cosA.cosB-sinA.sinB
sin(A + B)

cos(A +B)

sin A cos B+cos A sin B

(= QR=TS)

(iii) tan (A + B) =

~ cos A cos B—sin A sin B)
(dividing numerator and denominator by cos A cos B)

sinAcosB cosAsinB

cosAcosB cosAcosB
cosAcosB sinAsinB

cosAcosB cosAcosB

tan A + tan B
tan(A + B) = l-tan A .tan B




cos(A + B)

(iv) cot(A+B)= "G AR

cos A cos B—sin A sin B

~ sin A cos B+cos A sin B

[dividing of numerator and denominator by sin A sin B]

cos A cos B
sin A sin B
~ sinAcosB cosAsinB

sinAsinB sinAsinB

cotA.cotB—l
Bt (e B= cot B+cot A

T
Cor : In the above formulae, replacing A by 5 and B by x

We have

. (ﬂﬂj . m no

i) sin| 5 =sin—".CoS X + COoS . .sin X
2 2 2

=1.cosx+0.sinX=cos X

.. n i L

(ii) cos| 7 TX| =cos - .cosx—sinT .sinx
2 2 2

=0 xcos Xx—1xsinx=-sinx

. (T
sinf 3+
2— COS X

—+X| = = . =
(iii) tan[2 ) cos(E+x) “ginx =—cotx

(b) Difference Formulae :
(i) sin(A-B)=sinA.cosB-cosA.sinB
(i1) cos(A—-B)=cosA.cosB+sinA.sinB

tan A —tan B

(iii) tan (A-B)= 1, car A tanB

Proof :  Let the reveolving line OM make an angle A with OX and then resolve back to make £ MON =B

so that £ XON = A — B. (Fig. 8) N
Let 'P' be any point on ON. Draw PR L OX,
PTLOM, TSL OX, TQL RP produced to Q. L y |Q M
Then ZLTPQ=90°-ZPTQ=4QTM=A b
Now from A OPR, we have B
& Sni-m =Bk I5-CF : >X

OP  OP OP 0 S R Fpig_s




TS QP

~ OP OP
TS OT OP PT

= OT 0P PT OP
=sinA.cos B-cos A.sinB
OR OS+SR OS+TQ B %4_1}
OP OP op  OP QP
B oS OT+TQ PT

OT OP PT OP
=cosA.cosB+sinA.sinB
sin (A —B) sin A.cosB—cosA.sinB
cos(A—B) ~ cosAcosB+sinAsinB

(i) cos(A-B)=

(i11) tan (A -B) =

tan A —tanB
~ l+tanA tan B
Dividing the numerator and the denominator by cos A. cos B.
cos(A—-B)
(iv) cot(A-B)= Sinli—5)

cos A.cosB+sinA.sinB

sinA.cosB—cosA.sinB

cot A.cotB+1

cotB—cotA
dividing the numerator and denominator by sin A. sin B

We can also deduce substraction formulae from addition formulae in the following manner.
sin(A — B) = sin[A + (-B)]
=sin A . cos (-B) + cos A . sin (-B)
=sin A.cos B+cos A.sinB
cos(A — B) = cos[A + (-B)]
=cos A . cos (-B) —sin A . sin (-B)
=cos A.cosB+sinA.sinB

tan A+tan(—B)  tan A—tanB
tan(A - B) = tan[A + (-B)] = 1—tan A . tan (—B) " l+tan A .tan B
Example — 1 : Find the value of tan 75° and hence prove that tan 75° + cot 75° =

tan 45°+ tan 30°
Solution: tan 75° = tan(45° + 30°) = | tan 45° tan 30°
1+ 5] éﬂ
3 4B
B i ﬁ - ‘/g -1
V33
\/5 +1

tan 75° = \/5—1




A3—1 . |
R e since cot 6=
cat s _\/§+1 tan 6

. o B+l 3ol (B’ +(B-1’
tan 75° + cot 75° = \/5_1 4 \/§+1 = (\/§+l)(\/§—l)

B 3+1+2\/§+3+1—2\/§
a 3-1
tan 75° + cot 75° =4

[since (a + b) (a—b) = a> — b?]

T
\/§ show that A + B =

1
Example — 2 : If sin A = ﬁ and sin B = 4

1
Solution: sin A = ﬁ

1 10—1 9
cos A= Ve A= {115 = | e
10 10
;.cosA:ﬁ
]
sinB = cos B= \/1—sin?B
F F (s
.. cos B = f
Sin(A + B) =sin A cos B + cos A sin B
1 2 3 1 2 3
=Xt =X = ——t——
JI0 V5 V100 V5 50 /50
2+3 _2+3
=50 52

%) 1
- sin(A+B)= 5\/5_\/5
sin (A + B) = sin 45°

T . 180°
2 —45° — — | since 45°=
~A+B=45 4 [ | }

Transformation of Sums or Difference in to Products

(a) We have that
sin(A+B)+sin(A-B)=2sinAcosB ..(1)
sin (A +B)—sin(A—-B)=2cos AsinB n(2)
cos(A+B)—cos(A-B)=2cosAcosB ..(3)
cos (A—B)—cos(A+B)=2sinAsinB ...(4)
Let A+B=Cand A-B=D

+D C-D

> andB:T

C
Then A =




(b)

(c)

(d

Putting the value in formula (1), (2), (3) and (4) we get

) . . C+D C-D .
sin C + sin D = 2 sin cos . (1)
2 2
) . C+D . C-D By
sin C —sin D =2 cos sin - : ... (1)
2 2
C+D C-D
cos C + cos D =2 cos cos s (111)
2 2
~C+D _ D-C )
cos C—cos D=2sin ) sin ) v (1V)

for practice it is more convenient to quote the formulae verbally as follows :
Sum of two sines = 2 sin (half sum) cos (half difference)

Difference of two sines = 2 cos (half sum) sin (half difference)

Sum of two cosines = 2 cos (half sum) cos (half difference)

Difference of two cosines = 2 sin (half sum) sin (half difference reversed)

[The student should carefully notice that the second factor of the right hand member of IV is sin
C-D
5 ]
To find the Trigonometrical ratios of Angle 2A in terms of those of A : sin 2A, cos 2A.
Since sin (A + B) = sin A cos B + cos A sin B

not sin

putting B = A
sin (A + A) =sin A cos A + cos A sin A
= sin2A=2sinAcosA .. @)

cos (A +B)=cos A cos B—-sinA sinB

= cos (A+ A)=cos Acos A-sin A sin A

= co0s 2A =cos’A —sin’ A ... (ii)

Also cos 2A =1 —sin’A —sinlA =1-2sin?A ... (iii)
So 2sin’A=1-cos2A . >iv)
Also cos 2A = cos’A — (1 —cos’A) =2 cos’A -1 ... W)

or 2cos’A=1+cos2A . (vi)
Formula for tan 2A

tan A +tan B

I-tanAtanB

tan A +tan A

l—tanAtanA

since tan (A + B) =

tan 2A =tan (A + A) =

B 2tan A
" I—-tan’ A
Note this formula is not defined when tan’A =1 i.e,tan A = * 1

To express sin 2A and cos 2A in terms of tan A
sin 2A =2 sin A cos A

sin A
cosA 2tan A 2 tan A
- 1 sec’A ~ I-tan’ A

2
cos” A

10




(e)

)

11

Also, cos 2A = cos?A — sin’A

- sin® A
3 cos’ A —sin’ A 3 cos’A 1-tan’ A
cos A+sin A i sin® A 1+tan’A
cos® A
(dividing numerator and denominator by cos?A)
1—tan® A
cos 2A = 5
l+tan” A

To find the Trigonometrical formulae of 3A
sin 3A =sin (2A + A)
=sin 2A cos A + cos 2A sin A
=2 sin A cosA . cos A + (1 —2 sin?A) sin A
=2 sin A(1 —sin?A) + (1 — 2 sin?A) sin A
=3 sin A — 4 sin’A
Again, cos 3A =cos (2A + A)
=cos 2A cos A —sin 2A sin A
= (2 cos’A — 1) cos A —2 sin A cos A. sin A
=(2cos’A—-1)cos A—2cos A (1 —cos?A)
=4 cos’A -3 cos A
Also tan 3A =tan (2A + A)

tan 2A +tan A
~ 1-tan2A tan A

2.4 +tan A

1—tan’* A
l—ﬂ.tanA
l-tan” A

Il

2 tan A + tan A(1 —tan” A)
1—tan® A —2tan’ A

3tan A —tan’ A 1
= H , provided 3 tan’A # lie, tan A #*—
1-3tan” A J3
Submultiple Angles :
To express trigonometric ratios of A in terms of ratios of A/2

sin 20 = 2 sin O cos O (true for all value of 0)

) A
Let20=A1ie. 0= —

2
g B |
sin A =2 sin > cos > e (1)
cos 260 = cos?0 —sin’ O
or COSA200525 —sinzz ..... (i)
A -
cosA=2cos*— —1=1-2sin>— .. (iii)

2 2




2 tan ©
Also,tan20 = ——5
l1—tan” ©
2 tan A
tanA= ——2_ .. (iv)
1—tan’

T
[Where A # nm + 2,(n e Dand A # 2n+ 1) 7]

2sinécosé 2Sin%cos%
Again,sinA= — 2 2 -

1 cos’ é+sinzé
2 2

A
[dividing numerator and denomenator by cos? 2 )

A

2 tan —

sin A = A
1+tan” —

2

[where A # 2n+ 1)m, n € 1]
2 A > A L,

2 A .
cos” —-—sin“—  cos” ——sin
2 2

A
Similarly, cos A = 1 = s A . » é
s § )

Now dividing numerator and denominator by cos® o

l—tanzé

= COS A= S [where A # 2n+ 1)m, n € I].

1+ tan® =
2

Example -1 : Find the values of

(i) cos 22% (ii) sin 15°

. . A l+cosA .
Solution : (i) We have ¢ COSE = T , putting A = 45°
1+ .
005221 - ’M: \/5: V2 +1
2 2 2\ 22

(ii) sin 15°=sin (45° - 30°)
= sin 45°. cos30° — cos45°. sin 30°

12




13

1
Example — 2: Prove that sinA.sin (60° — A).sin(60° + A) = Z sin3A

Solution : sinA.sin (60° — A) sin (60° + A)
= sin A. (sin?60° — sin’A) [+ sin (A + B). sin (A — B) = sin’A — sin’B]

’ NE 1
= sinA[[?] —sin? Ajl :S‘H[Z_SIW A]zz [3sinA — 4 sin3A]

= lsin 3A
4

3
Example — 3: Prove that sin20°.sin40°.sin60°.sin80° = 16
Solution : sin 60°. sin 20°.sin40°. sin 80°

3
= % [sin A. sin (60° — A). sin (60° +A)] where A = 20°

=£-l-sin3A=£-sin60=£-£:i
2 4 8 8 2 16

Example - 4: If A + B+ C = and cos A = cos B . cos C show that tan B + tan C = tan A
Solution : L H.S. = tan B + tan C

sinB sinC sin B.cosC+cos B.sin C

cosB cosC cos B.cosC

B sin (B+C) B sin (T—A) _sinA P ]
= cosB.cosC _ cosB.cosC _ cosA  onA =RA - (Proved)

Examples — 5: Prove the followings

(a) c0t71—2°:\/3+\/§+\/§+2
(b) tan371—;=J€+J§—ﬁ—2

0 1+cos6
Solution : (a) We know cot 5 i

(Choosing 6 = 15)

sin
1 1+ cos15°

=cot7—-°=

2 sin 15°

1+[\5+1]
22 ~ YOI W BT
3-1

AT U -
2.0

- V2 +3+1) (3+1) _2J6+2V2+3+43+1+3
- B3-DHBE+p T 3-1

26 +23+242 +4
- g

= \/—6+\/—3—+\/5+2
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0 sin O 1—cos®
(b) we know tanaz 1+COS9 =~ Sin 9 (ChOOSing 9 = 750)
1° 1-cos75°  1—cos(90°-15°)
tan37- =- '~ = . e
2 sin 75° sin(90°-15°)
[\/5—1]
. o) 1_ ‘\/7
1-sin15 :# 2\/5_\/5_”
= cosl5°® B :W
22

03 ~43 £ DB =1
= (\/§+1)(\/§_1) Z\/g+\/§—\/§—2

1
Tl tan ) (A+B)

Example - 6: If sin A = K sin B, prove that tan ; (A-B)= K
Solution : Given sin A = K sin B
sinA K
= sinB 1
Using componendo & dividendo
sin A +sin B K+1
sinA-sinB T K—]

. A+B A-B
2 sin .COS

2 K+1
=> = =
2cosA+B.sinA & K-1
2 2
; A+B tA—Bﬁ_K+1
= tan . CO ) __K—l
A+B K+1 A-B
= tan =

) Kl . tan 2

A-B K-1 A+B
=TT S B

~. LH.S. =R.H.S. (Proved)

o —
Example - 7: If (1 —e) tanZE = (1 + e) tan*>—, Prove that cos[?»:LOLe
2 2 1-ecoso
a .
Solution : (1 —¢) tan2§ =(1+e) tanzz (Given)
LB Lre Lo
an’ 5 = T tan’y
L.H.S = cos 8
l—tan2E I—H_—etan2g
_ 2 _ l—e 2
1+tanZE l+1+—etan2g
2 —e 2




, O , O
(l—tan“ ]—e[lﬂan“ )
2 2

l—e—tanz%—etanzg
- o o [1+tan> % 1—tan? <
l—e+tan25+etan25 i 2 —E| Al )
o o
] — |+ tan® —
2 2
a_e o
1+ tan’ 1+ tan’
_ 2 2
- 5 O ) O
l+tan” — l—tan” —
2 2
oc_e o
1+ tan> — 1+ tan® —
2 2
cosoL—e
SR T——— R.H.S (Proved)

Example - 8: If A + B + C = 1, then Prove the following
(i) sin 2A + sin 2B + sin 2C =4 sin A. sin B. sin C
Solution : L.H.S. = sin 2A + sin 2B + sin 2C
=2sin(A+B).cos(A-B)+2sinC.cos C
=2sin(m-C).cos (A-B)+2sinC.cosC
=2sinC.cos (A-B)+2sinC.cos C
=2sin C [cos (A — B) + cos C]
=2sin C [cos (A - B) —cos (A + B)]
=2sinC.2sinA.sinB
=4sinA.sinB.sinC R.H.S. (Proved)
(ii) sin 2A + sin 2B —sin 2C =4 cos A . cos B. sin C
Solution : L.H.S. = sin 2A + sin 2B — sin 2C
=2sin(A+B).cos(A-B)-2sinC. cos C
=2sin(m—-C).cos (A-B)-2sinC. cos C
=2sin C. cos (A—-B)—-2sin C. cos C
=2sin C [cos (A —B)—cos {mt— (A +B)}]
=2sin C {cos (A-B) +cos (A +B)}

A-B+A+B A—B—A—B}
.COS

=2sinC {2003 5

=4 sin C. cos A. cos B.

(iii) sin A +sin B-sin C =4 sinE sin g cos g
Solution : L.H.S. =sin A + sin B —sin C
~ A+B A-B - C C
=2sin ) . COS 5 —2sm2.cos
C A-B . C C
=2cos - .cCos —2sin . COS

2 2 2 2

15




C {COSA_B—sinE}
—2c052 >, 5
C cosA_B—sl (E—A+B)
:2c052 5 5
C{COSA_B—CO§A+B}
:20052 T,
A-B A+B A—B_A+B
C leays 2 2 4 2 2
:2COSE (=2)sin > . sin >

ASSIGNMENT

1 1
If tanol = iy tanf = e then find the value of (o + B)

) cos15°+sin15°
Find the value of :
cos15°—sin15°

1

tan3A—tan A N cot3A—cotA
If A + B =45° show that (1 + tanA) (1+ tanB) =2

B

5 ,» O
If(1—e) tan"==(1+e)tan” —
(1-e) 5 (I+e) 5

Prove that =cot2A

cosoL—e
Prove that cosf} = rR—
—ecos

If A + B + C =m, prove that
c0s2A + cos2B + cos 2C + 1 + 4 cos A.cosB.cosC =0

O & 0O
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INVERSE TRIGONOMETRIC FUNCTIONS

INVERSE FUNCTION :

If f: A — B be a bijective function or one to one onto function from set A to the set B. As the function is
1 — 1, every element of A is associated with a unique element of B. As the function is onto, there is no element
of B which in not associated with any element of A. Now if we consider a function g from B to A, we have for
f € B there is unique x € A. This g is called inverse function of f and is denoted by f'.

A T B B & A
1 > a a - 1
2 >—+—b b > ?
3 ¢ ¢ 3

INVERSE TRIGONOMETRIC FUNCTION :
We know the equation x = siny means that y is the angle whose sine value is x then we have y = sin'x
similarly y = cos™'x if x = cosy and y = tan"'x is X = tan y etc.
The function sin™'x, cos™'x, tan"'x, sec'x, cosec™'x, cot'x are called inverse trigonometric function.
*  Properties of inverse trigonometric function.
I.  Self adjusting property :
(1) sin!' (sinB) =06
(i) cos™'(cosO) =0
(iii) tan™' (tanB) =0
Proof:
(i) Letsin® =x, then 6 = sin”'x
*. sin™! (sinB) = sin'x = 6
proofs of (ii) * (iii) as above.
II. Reciprocal Property :

1
(i) cosec!—=sin"'x
X

(i) sec! — =cos'x
X

1
(iii) cot!—=tan'x
X

17
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Proof :

(i) Letx =sinO then cosecH =

o |-

1
so that O = sin”'x & 0 = cosec™ —
X

. sin”'x = cosec”! —
X

(i1) and (iii) may be proved similarly
III. Conversion property :

(i) sin'x = cos™ y1-x* =tan™

X
-2
(ii) cos'x sin™ ﬁ=tan“ \/:

X

Proof:
(i) Let© =sin"'x so that sin 6 = x

Now cosO:\/l—sinzezx/l—x2

1.€., 0= COSﬁI

Thus we have 6 =sin"' x=cos™ V1—x* =tan™

l—x
Theorem - 1 : Prove that

(1) sin™'x + cos™'x =
" T
(i) tan'x + cot'x = )

T
(iii) sec™'x + cosec™'x = )

Proof :
(i) Letsin'x =0, then

b
x:sine:cos(2 —9)

= sin'x +cos'x = 5

(i1) and (iii) can be proved similarly.
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Theorem - 2 : If xy < 1, then

X+y
tan-'x + tan™! y = tan™! [1 )

Proof : Lettan'x =0 and tan”' y = 0,
Then
tan O, =x and tan 0, =y

tan6, +tan6, x+y

tan (0, +60,) = a
= tan (6, +6,)) 1-tan6, tan 6, 1—xy

: X+y
= 91+92:tan 1—xy

X+
-1 -1 - -1
= tan'x+tan'y = tan (l—xyj

Xx-y
I 1y _ 1y — | [P
Theorem — 3 : tan'x — tan™' y = tan (1+xy)
Proof : Let tan'x = 0, and tan"'y = 6,
= tan B =xandtan 6, =y
tan0, —tanB, x-y
I+tan6,tan 0, 1+xy

1 X_y
= Ol—ezztan s xy

= tan(0,-0,) =

X—y
-l _ tap-lv = tai-1
= tan'x —tan'y = tan |:]+xy}

Note : tan™' + tan™' y + tan™'z
X+y+z—Xyz
=tan'| T _
l—xy—yz—1zx

Theorem - 4 : Prove that :

(i) 2sin'x =sin! [ZX\/ 1 —Xz]

(i) 2cos'x =cos'(2x*-1)
Proof :
(i) Letsin'x =0, Then, x = sin 6

sin20=2sin O cos 0 =2 sin 0. v/1—sin’ 0
=2x V1-x>
= 29:sin‘[2x\/]—x2] = 2sin‘x:sin'[2x\/1—xz]

(ii)) Letcos'x =0 Then, x =cos 0
cos20=(2cos’0-1)=2x>-1
= 20=cos'(2x*>-1)
= 2cos'x=cos! (2x*-1)




Theorem - 5 : Prove that

(i) sin! x +sin! y = sin™ [X\/l = y2 + y\/l i ]

(i) cos'x + cos™'y = cos™! [xy —4/(1- XZ)(l — yz)]
(iii) sin”'x —sin™' y = sin™! [X\/l -y’ - Y\/l -x’ ]

(iv) cos'x —cos™'y = cos™ [xy +4(1- x*)(1- yz)]

Proof :
(i) Letsin'x =0, and sin"'y = 0,, Then
sin® =xandsin6,=y
sin (6, +6,) =sin 6, cos 6, + cos 6, sin 6,

sinel\/l—sinze2 + \/(l—sinzel) sin 6,
xy1-y* +y1-x*

= 6]+62:sin"[xﬂ +ym]

= sin“x+sin“y:sin“[xx/1—7 +yJ1-x2 ]

The other results may be proved similarly.
Example — 1 : If cos'x + cos'y + cos'z=T7
then prove that x> + y? + z% + 2xyz =1
Solution : Given cos™'x + cos’'y + cos'z=mn
cos'x + cosly =1 —cos'z

cos™ (xy — V1-x24/1-y? )= (- cos'2)
Xy — V1—x2/1—y* =cos (T —cos'z)

= xy—\/l—xz,ll—y2 =—cos (cos'z) =—z
= xy+z:\/1_x2,/1_y2

= Xy+z)l=(01-x3){1-y)=1-x>-y>+ x%?
= Xy +2z2+2xyz=1-x*-y*+x%¥?
= Xx*+y*+z22+2xyz=1 (Proved)

Example - 2 : Find the value of cos tan™ cot cos! 73

/3

Solution : cos™ 7 =0 = cos O = 7

n V3 =
3 T
cos tan™! cot cos™! 7 =cos tan! cot g

Tt 1
=costan™ /3| s tan 3 =" |=cos ===
3 3 2

20
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31

1 1
_ . -1 — -1 = -1 .
Example - 3 : Prove that 2 tan 5 + tan - tan 17

1 1
Solution : 1L.H.S 2 tan™ 5 + tan™! 7
1 1 1 41 1 1 1]
— I 1 1 -~ 2tan = tan + tan
tan 2+tan 2+tan 7 ( ) ) )
1 1
_+_
~tan”' = + tan"' —2—7
1 1
1-—x
7
[ tan™' x + tan ™' y=tan_l x+y]
1—-xy
Ea
= fan-l— a0 14 s S il
= tan 2+tan 13 tan 2+tan 3
14
1 9 31
-1 5 i E -1 % -1 il R H S P d
= tan l—g—tan W—tan 17 = RH3. (Proved)
I-—x —
2 13 26
NETRIR
Example — 4 : Prove that cot!9 + cosec™! = i
. 1
Solution : L.H.S. = cot™'9 + cosec™ &
1 4 .. L V41 L
—tan~' — +tan*'5 .. cosec T—tan g
1 " 4 5+36 41
e, 9 5 aq 45 45
= tan l_vl = tan 151 = tan 1
9°5 45 45
T
=tan' 1 = 4 R.H.S. (Proved)
ASSIGNMENT

1. Find the value of tan'1 + tan™'2 + tan'3
2. Ifsin'x + sin’'y + sin"'z = 7. Show that

x.\/l—x2 +y\/1—y2 +z\/1—z2 =2xyz

1

Y. p T
3. Ifssmn 1§+cosec —5 . Find the value of x.

>
4

O & 0O




CHAPTER - 2
DIFFERENTIAL CALCULUS

1.LIMIT OF A FUNCTION

Lets discuss what a function is

A function is basically a rule which associates an element with another
element.

There are different rules that govern different phenomena or happenings in
our day to day life.

For example,

I Water flows from a higher altitude to a lower altitude

ii. Heat flows from higher temperature to a lower temperature.

iii. External force results in change state of a body(Newton’s 1** Rule of
motion) etc.

All these rules associates an event or element to another event or element,
say, X with y.

Mathematically we write,
y =f(x)

i.e. given the value of x we can determine the value of y by applying the rule
lfl

for example,
y=x+1

i.e we calculate the value of y by adding 1 to value of x. This is the rule or
function we are discussing.

Since we say a function associates two elements, x and y we can think of
two sets A and B such that x is taken from set A and y is taken from set B.
Symbolically we write

x € A(xbelongstoA)

22




23

y € B(xbelongstoB)

y=f(x) can also be written as

(xy) ef

Since (x,y) represents a pair of elements we can think of these in relations
f < AXB or

f can thought of as a sub set of the product of sets A and B we have earlier
referred to.

And, therefore, the elements of f are pair of elements like (x,y).

In the discussion of a function we must consider all the elements of set A
and see that no x is associated with two different values of y in the set B

What is domain of function

Since function associates elements x of A to elements y of B and function
must take care of all the elements of set A we call the set A as domain of
the function. We must take note of the fact that if the function can not be
defined for some elements of set A, the domain of the function will be a
subset of A.

Example 1
Let A={1,2,3,4,-1,0,—4}
B={0,1,2,3,4,—1,—2,-3}

The function is given by
y=f(x)=x+1
for x=1,y=2

x=2,y=3

x=3,y=4

x=4,y=5
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x=-1,y=0
x=0,y=1
x=-4,y=-3

clearly y=5 and y= -3 do not belong to set B. therefore we say the domain of
this function is

the set {0,1,2,3,—1, } which is a sub set of set A.
What is range of a function

Range of the function is the set of all y’s whose values are calculated by
taking all the values of x in the domain of the function. Since the domain of
the function is either is equal to A or sub set of set A, range of the function
is either equal to set b or sub set of set B.

In the earlier example,

Range of function is the set {1,2,3,4,0} which is a sub set of set B
SOME FUNDAMENTAL FUNCTIONS

Constant Function

Y = f(x)=K, for all x

The rule here is: the value of y is always k, irrespective of the value of x

This is a very simple rule in the sense that evaluation of the value of y is not
required as it is already given as k

Domain of ‘f’ is set of all real numbers

Range of ‘f’ is the singleton set containing ‘k” alone.
Or

Dom= R, set of all real numbers

Range= {k}

Graph of Constant Function




Lety =f(x) =k =2.5

w

N

y axis

H

[en]

The graph is a line parallel to axis of x

Identity Function

Y = f(x)=x, for all x

The rule here is: the value of y is always equals to x

This is also a very simple rule in the sense that the value of y is identical
with the value of x saving our time to calculate the value of y.

Dom =R
Range =R
i.e. Domain of the function is same as Range of the function

Graph of Identity Function

Axis Title
;
w
N
l
[RY
i
N
w
H

4
Axis Title
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Modulus Function

y=f0)= Ix|= {—xa'c,xx2<00}

The rule here is: the value of y is always equals to the numerical value of x,
not taking in to consideration the sign of x.

Example
Y =f(2)=2
Y=f(0)=0
Y=f(-3)=3

This function is usually useful in dealing with values which are always
positive for example, length, area etc.

Dom =R
Range =R*U {0}

Graph of Modulus Function

(4]

y Axis

x Axis

Signum Function
| x| 1,x>0
y=f(X)={7’x¢0]={O,x=0}
O,x=0 _1;x<0

This is also a very simple rule in the sense that the value of yis 1 if x is
positive , 0 when x=0, and -1 when x is negative.
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Dom =R

Range = {—1,0,1}

Graph of Signum Function

[1EY

®
g © U »r»

ool

Greatest Integer Function
y = f(x) = [x] = greatest integer < x
For Example [0] =0,[0.2] =0,[2.5] = 2,[-3.8] = —4, etc.
Dom =R
Range=Z(set of all Integers)

Graph of The function

(<)}

()]

Exponential Function
y = f(x) = a* wherea >0

Dom =R
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Range=R"

The specialty of the function is that whatever the value of x, y can never be
0 or negative

Graph of Exponential Function

N
[en]

15 2
y=2% /
2
x
© 10
>

\

v
\

=7
2 1 0 3 4 5
x Axis
20
Q 15
2 =(0.5)% e
3 — y=(0.5) .
= \
\i_.g‘—
5 4 3 -2 -1 0 1 2
x Axis

Logarithmic Function

y = f(x) =loggx
Dom =R*
Range =

Graph of Logarthmic Function

4
y =log x

2 . an ®
2
Z 0
> 0 1 2 3 4 5 6

-2

-4

x Axis
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Differentiation

A function f(x) is said to be differentiable at a point x=c iff

fle+h)=f(c)
m

}11_)0 o exists
In general, a function is differentiable iff

. fx+B)—Fx) .

lim exists

h—0 h

Once this limit exists, it is called the differential coefficient of f(x) or the
derivative of the function f(x) at x=c

Or
’C+h—fC
’X+h —J X

Where f'(c) and f'(x) are the differential coefficient or the derivative of the
function, the first being defined at x=c

Examples
Consider the function
y = f(x) = k or the constant function

In this case the differential coefficient f'(x)is given by

fx+6x) = f(x)

fe) = jim, 5
i k—k _0
= By Bk

Therefore the constant function is differentiable everywhere and the
derivative is zero
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Consider the function

y=f(x)=x
von o S+ 8x)— f(x)
f(x)_alylcr—r}o ox
(x + 6x)? — x?

- &icr_r)lo (x+6x) —x
= 2x
Consider the function
y = f(x) =sinx
- f(x +6x) — f(x)

f'G) = lim o
~ sin(x + 6x) —sinx
= lim
Sx—0 ox
Zcos(x+62x+x) ><Sin(x+($2x—x)
= lim
8x-0 ox
Cos(x+62x+x) ><Sin(x+52x—x)
= lim
5x—0 g&
2

_eos(EET) (%)
5x

2

ox
= limcos(x+—) X1
5x—-0 2
= COS %

Therefore

y = f(x) = sinx




Algebra of derivatives

— = CO0SX

dx

Consider two differentiable functions u(x) and v(x)

Let

Then

Let

Let

Example

1

y=u+v
dy_du+dv
dx dx dx

y=uXxv

y = sinx + x3

dy

— = coSx + 2x
dx

y = x%cosx

32




d_y = x2(—sinx) + cosx(2x)
dx

= —x2sinx + 2xcosx

sinx

Y= Cosx
dy cosxcosx — sinx(—sinx)

dx (cosx)?

dy (cosx)*+ (sinx)?
dx (cosx)?

dy  (cosx)* + (sinx)?
dx (cosx)?

dy 1
dx  (cosx)?

= (secx)?

Geometrical meaning of f'(c)

Consider the graph of a function

y=fkx)

f(c+h)-f(c)

33




fle+h)—f(c)
h

Represents the ratio of height to base of the angle the line joining the point
P(c,f(c)) and Q (c+h,f(c+h))

i.e

fleth = _,

n an6

Where 6 is the angle the line joining the point P and Q makes with the positive
direction of x axis.

In the limiting case as h— 0 i.e as Q— P the line PQ becomes the tangent line
and the the angle 8 becomes the angle a which the tangent line makes with
the positive direction of x axis

i.e

il e+ B — fle)
im

lim 7 = f'(c) = tana = m (the slope of the tangent)
Application to Geometry

To find the equation of the tangent line to the curve y=f(x) at x=xo

The equation of line passing through the point (x,, f(xy)) is give by
y — f(xo) = m(x — x0)
Where ‘ m’ is the slope of the tangent line.
As, we have seen
m = f"(x,)
The equation is therefore
y — fxo) = f'(x0)(x — x0)
In the above example if we take

f(x) = x? and the point x, = 1

34
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The equation to the tangent at the point is given by

y— f(xo) = f'(x0)(x — xp)

Or
y—12=2x1(x—-1)
where
Flxg) =xt =12 und F'lrg) = 2 X % =21
l.e

the equation is
y—1=2(x-1)
Derivative as rate measurer

Remember the definition

jim LEXD SO _ foy

h—0

The quantity

flc+h)—f(c)
h

I !

measures the rate of change in f(c)wth respect to change hin 'c
Consider the linear motion of a particle given as
s=f(t)

Where ‘s’ denotes the distance traversed and ‘t’ denotes the time taken
The ratio

)

t
Denotes the average velocity of the particle

To calculate the local velocity or instantaneous velocity at a point of time
t=t,we proceed in the following way




Consider an infinitesimal distance ’ §s’ traversed from time t=t, in time ’ §t’
The ratio

os
ot
Still represents a average value of the velocity

The instantaneous velocity at t=t, can be calculated by considering the
following limit

y os
5150 Ot
or
_ ds
V=

Where ‘v’ represents the instantaneous velocity which is defined as rate of
change of displacement

Similarly, we can write the mathematical expression for acceleration

As

dv
dt

Or the rate of change of velocity

Example
If the motion of a particle is given by
s=f(t)=2t+5

Which is linear in nature, we can calculate velocity at t=3

ds
U(t=3)=E=2

It is clear that the velocity is independent of time ‘t’.
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i.e
the above motion has constant or uniform velocity.

And, therefore, the acceleration

dv .
a =—=

dt
Or the motion does not produce any acceleration.
Consider another motion of a particle given as

5= Flt) = 2¢* 43

Here the velocity at t=3 can be calculated as

= B s s = o B
Vb= S dt B
And the acceleration
_dv_4
*=a

Therefore we can say that the motion is said to have constant or uniform
acceleration

Derivatives of implicit function

Consider the equation of a circle

This is an implicit function

Lets differentiate this equation with respect x throughout, we get
dy
2x+2y—=0
Y dx

dy —x

dx y

37




Derivative of parametric function
The equation of a circle can also be written as
x = rcost
y = rsint
This is called parametric function having parameter ‘t’

In this case

dy d_}t] _ rcost X —x

dx  dx  —rsint -y y
dt

Derivative of function with respect to another function

Consider the functions

y=fx)
z=gx)
dy _f'@)
dx  g'(x)
Example
Let
y = sin(x)
2=

dy f'(x) cosx
dx g'(x) 3x2

Derivative of composite function
Consider the function
y = f(u) whereu = g(x)

Theny is called a composite function

38




39

In this case

dy_dyxdu
dx du’ dx

This is called Chain Rule. This can be extended to any number of functions.

Example
1.Let
y = sinx?
This can be written as
y = sinu
And
o= x*
Applying chain rule, we have
Z—i} = 3—Z X Z—Z = CoSH X 2% = 2xcosx>
2.Let
y = tane*’
This can be written as
y = tanu
And
u=e’
7=x°

Applying chain rule, we have
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dy dy du dv 5
= sec?u X eV X 2x = sec?e*” x e* X 2x

— _x_.=

dx du’ dv’ dx

Derivatives of inverse function

As 6x = 0,6y also = 0

Which follows from the fact that
y = f(x) being a dif ferentiable function is a continuous function

And the condition of continuity guarantees the above fact.

Derivative of inverse trigonometric function

Let
¥ = Sin %

Where ye (— g, g)

This can be written as
X = siny
dx
d_y = cosy

Or
dy i | 1 1 1

dx cosy - FV(1 = sin?y) B V(1 —x?) B V(1 —x2)

Since cosy is positive in the domain
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Let
¥ = 608 %
Where ye(0,m)
This can be written as
X = COSy
dx ,
d_y = —siny
Or
d_y =l -1 -1 -1

dx  siny B FV(1 — cos?y) N V(1 - x?) B V(1 —x2)

Since siny is positive in the domain

Let
y = sec™1x
Where ye (0, g) U GT()
This can be written as
X = secy

dx

d_y = secy X tany
Or

dy 1 1 1

1
dx secy X tany x\/(seczy -1) B x(F+/(x2 — 1)) - lx|V(1 — x2)
Since secy X tany is positive in the domain
Let

Vv = gosec ' x
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1

Where ye (—%, O) U (O’E)
This can be written as

X = cosecy

dx

s = —cosecy X coty

Or

dy 1 —1 -1 ~1
dx cosecy X coty xV(cosec?y — 1) - x(F/(x%2—-1)) - Ix|[V(1 —x?)

Since cosecy X coty is positive in the domain

Let
_ =
y=tan~"x
This can be written as
x = tany
dx .
— = sec
dy Y
Or
dy i 1 1
dx sec’y 1+tan?y 1+ x2
Let
T = Bt ™%
This can be written as
x = coty
dx y
— = —cosec”y




Or

dy -1 -1 ~1

dx ~ cosec?y 1+ cot?y “1+x2

Higher order derivatives

Let
y=fkx)
Is differentiable and also
dy 5
i f'(x)
Is differentiable. Then we define
d (dyy d*y
#(a) ==
. [+ dx)—f'(%)
= lim
6x—0 ox

This is the 2™. Order derivative of the function

Similarly we can define higher order derivatives of the function

Example
Let
y=fx)=x3+x*+x+1

dy_

dx—f’(x) =3x?+2x+1

Y _ 4
sz (x)=6x+2
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Consider the Function
y = f(x) = Acosx + Bsinx
Here

BY o, = — s - B
i f'(x) = —Asinx + Bcosx

dzy 17 ]
== = f""(x) = —Acosx — Bsinx = -y

i.e in this case

d?y
—+4+vy=0
dx? Y
Monotonic Function
Increasing function
Consider a function
y=fx)

If x, > x; implies f(x,) > f(x1)

Then the function is increasing

Example
y=fx)=x+1
f2Q=2+1=3
f=1+1=2

or

f(2)>f(1)
Therefore the function is increasing

Graph of the function




N WA O

N H

Decreasing function
Consider a function

y = f(x)
If x, > x; implies f(x,) < f(x;1)

Then the function is decreasing

Consider the function
=fx) = .
y=fx)= .
(2) = .
12l = 2

1

f(1)=I=1

Or

f(2) < f(1)
Therefore the function is decreasing

Graph of the function
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4.5

A function either increasing or decreasing is called monotonic.
Derivative of Increasing Function

If f(x) is increasing, then

8x-0 ox

i.e

for increasing function the derivative is always positive

Derivative of Decreasing Function

If f(x) is decreasing, then

.ﬂx+&0—f@)<0
ox

F1G) = im,
i.e
for decreasing function the derivative is always negative
example
let

y=fx)=x+1
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Y =150
dx [ =
Therefore the function is increasing

Let

1
J’:f(x):;

Therefore the function is decreasing

Let

y = f(x) = x*

dy
T Filx) = Zx
>0 forx>0
<0forx<0
Therefore the function is increasing for x > 0 and decreasing for x < 0

Graph of the function

y = f(x) = x?

(¢ 2}

—
N
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CHAPTER -3
ALGEBRA

COMPLEX NUMBERS

INTRODUCTION

We have the knowledge of integers, fractions and irrational number (all these constitute real numbers).
But if we try to solve the equation x> + 1 = 0, we observe that these numbers are not adequate. Trying to
solve this equation, we arrive at x> =—1ie. x = \/_] .

Square of a positive real number is positive and that of a negative real is also positive. So there is no real
number whose square is negative. So we are to create a new kind of number. We define the square root of
a negative number as imaginary number' particularly ./_j =1, the basic imaginary number.

Then —4 =2i, J=2 = ﬁiandsoon.

Imaginary numbers :

Taking 1= /-1, we observe that
i2=-1
Pe—li=-d
=

Since 1= Lod S P P T =i"*! where n is an integer.
=il gl L g
P11 S —
14_i8_i12_116: _i4n

COMPLEX NUMBERS

The numbers of the form a + ib where a and b are real numbers and i = \/—] , are known as complex
numbers.

In complex number z = a + ib, the real numbers a and b are respectively know as real and imaginary parts
of z and we write :

Re(z) =aand Im (z) =b

Thus the set C of all complex numbers is given by C = {z:z =a+ ib, where a, b ¢ R}

Purely real and purely imaginary numbers :

A complex number z is said to be

(1) Purely real, if Im (z) =0

(ii) Purely imaginary, if Re (z) =0

Thus, 2, -7, /3 etc are all purely real numbers.

-1. . ’
While2i, i./3, ) i etc are purely imaginary.

Conjugate of a complex number :
The conjugate of a complex number 'z', denoted by 7 is the complex number obtained by changing the
sign of imaginary part of z.

e.g. (2+3i) = (2-3i); (3+51) = (3-50),
6l =—6i; — 21 =2i
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Modulus of a complex number : If z = x + iy be a complex number, the modulus of z, written as | z | is

a real number \/x2+y2.
For z=3+4i |z]|= 43> +4* =85,

Also |z|=|z|.

Ifz=x+1y, Z=x-1y.

lz|= \/x2 +y2 ,Iilz\/x2 +(—y)2 =\/x2 +y2
SUM DIFFERENCE AND PRODUCT OF COMPLEX NUMBERS

For any complex number

z,=(a+ib)and z, = (c +id)

we define

)z, +z,=(@+ib)+(c+id)=[(a+c)+i(b+d)]
(i)z,—-z,=(@+ib)-(c+id)=[(a-c)+i(b-d)]
(iii) z,z, = (a + ib)(c + id) = [(ac — bd) + 1 (ad + bc)]

CUBE ROOTS OF UNITY

Let 3/] =x, then
x=1 [on cubing both sides]
= x3-1=0 = x-1D&E*+x+1)=0

= x-1=0 or xXX+x+1=0
—1£J1-4
= x=i or XIT
—-1+iV3
= X:l or X= —m——
2
o —1—-1i4/3
The cube roots of unity are 1, 1+—1‘/§ and 71\/—

n 2
Clearly one of the cube roots of unity is real and the other two are complex.
Example - 1 : Express in the form a + ib

. 3+5i o (1+0)°
3255 W s
3451 (B+5D(2+3)  6+10i+9i+151° —9+419i -9 19
SoP:® 575 = e-me+3m) " 492 -~ 1B "B 13!
+i)? A+i*+2)3B+i) 62 6i+2 1 3.
W 35 = GDE+) 9 - 10 -5 75

Example - 2 : Find the value of i'” + i* —i'®
Sol* : T+ R =10 1 +0-i? 4= (B 4+ P -0G)".1
=CEDRi+ DO - (-1D)Si=i+1-i=1
Example - 3 : If 1, w, ®* are the cube roots of unity prove that
(@ 1-0)d-0)d-0)A-0)=9
Sol": LHS.(1-w) (1 -0 (1 -0 -w)
=(l-0)(1-0){-0.on)d-o’w)
=(l-0)(1-0)d-0)d-v)
=(l-0(1-w)=[1-w) d-u)P
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50

= [(l-0-w+0*P=2-w-n?)?

=R+1f=3=9
Example - 4 : Find square roots of
(a) 3+4i

Sol": (a) Letx,y € R,x+iy=./3+4j
X*—y*+12xy =3 +4i
Equating real and imaginary parts
x*—y*=3and 2xy =4
X2+ y)=(x*-y?)? +4x%* =25

Hence x? + y> = £ 5, But since x* + y? is non-negative, we have

x>+y*=5
xz_y2:3
2x2=8

ie x¢=4,ie,x=%2, y?*=11ie.,y= %1
Hence square roots of 3 +4i= £(2 +1)

Assignment

1. If w be the cube roots of unity, then prove that
1-w+w)+({1+w+w) =128
2 Find square roots of =5 + 124)=1
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PARTIAL FRACTIONS

ALGEBRAIC FRACTIONS, PARTIAL FRACTIONS FROM A PROPER FRACTION

Polynomial :
An expression of the form ax" +a x"~' +a,x"* + ..... +a_, where n is a positive integer and a, a, a, ....
a_are real numbers and a, # 0 is called a polynomial of n'" degree.

Rational Fraction :
The quotient of two polynomials f(x) and g(x) where g(x) # 0 is called a rational fraction.

In this section we shall be taking functions which are quotients of two polynomial functions. Such
functions are called rational functions.
The functions given by algebric expression such as

4x> -5 % 2x—5 dx3+x+l lled rational functi H
x-27.x+2) G+D(x+2) ' © —x® +x—1 an = etc are called rational functions. Here

both the numerator and denominator are polynomial functions. There are three types of partial fractions.

1. Proper fraction.
2. Improper fraction
3. Mixed fraction.

y Proper Fraction : If the degree of the numerator is less than the degree of the denominator, the fraction
. . 1 2x X’
is called proper fraction for e.g. (x+1)(x+2)° 2 1+3x+2 and (x—1)(x=2)(x=3) etc.
N() < D()
RESOLVING A RATIONAL FUNCTION INTO PARTIAL FRACTIONS
Case — 1 : When the denominator contains non-repeated linear factors,
for each linear non-repeated factor px + q.
A
there is partial fraction of the form :
pxX+q
, P(x) P(x) , fracti
06 = (pixt ) pa X+ (X psmt ) e(parot ) 8 PEODEL Tection,
P(x) A, A, Aj A
then Qx) = pX+4, + PaX+4, + pX+qs " PX+q, o WRETE Ay By By cxensn A, are constants.

Example — 1: Split into partial fractions

B
(x+1)(x+2)




S T . B
O L e DB+~ bl T xR
A(x+2)+B(xx+1)
T (x+D(x+2)
= X=AX+2)+Bx+1)....... (1)

Puttingx +2=01.e. x =-2
2=A.0+B(2+1)
= -2=-B
= B=2
Againputx+1=0
= x=-1
= -1=A-1+2)+B.0
= -1=A = A=-1
Putting the values of A & B we get required partial fraction
X -1 2
(x+D(x+2) 7 x+1 ' x+2
Case — 2: 'When the denominator contains repeated linear fractors, for a repeated factor like
of the denominator there exists the sum of r partial fractions of the form.
A, A, Aj Ay
pX+q + (px+q)2 i (px+q)3 ok wsee = (pX+q)r

Example - 2 : Resolve into partial fractions, the function m

A B _C
G=Dx+D> = x=1 " x41  (x+1)

Sol" : Let

A+D? +BE+DE-1D+C(x-1)
- (x+1%(x—1)
= 1=Ax+12+Bx+DE-1)+Cx-1)
Puttingx—1=01e.x =1,
1=A( + 1) =  4A=1

:>A:Z

Puttingx + 1 =0 = x =-1

1
1=C(-1-1) = 2C=1= C:_E
Equating co-efficients of highest powers of x (i.e. x*) on both sides in equation
I=AX*+2x+ 1)+Bx-1)+Cx-1)
we get 0=A+B

) ) 1
1.eA_—B1.e.B_—4

(px+q)

52




Hence required partial fraction is given by
1
T (x=D(x+1)’
1 1 1 1
T A(x=1) T Ax+1D) T 2 (x+1)°
Case — 3 : When the denominator contains non-repeated quadratic factors which cannot be factorised, For
each quadratic non-repeated factor ax’ + bx + ¢ of the denominator, there exists a partial fraction of

Ax+B
ax’ +bx+c

the form

1 Ax+B Cx+D
K+ +B) T X ra T x> +P

For example,

1
and, (x2+a,)(x2+a2) ..... (x2+a)

Ax+B, A,x+B, A x+B

2 + 2 Foens
X +a X" +a, X" +a

Example - 3 : Resolve into partial fractions x—1)(x2 +1)

Lei X B A Bx+C
o e=-DEED) T 21" 2+

Sol" :

A +D)+(Bx+C)(x-1)
- (x=D(x>+1)
= Xx=AX*+1)+Bx+C)(x-1)....(a)
Puttingx —1=01i.e.x=11in(a)
1=A12+1)+Bx+C).0
1

2A=1 ==
= = 5

Equating coefficients of highest powers of x on both side in (a)
x=Ax>+A+Bx*+Cx-Bx-C

0 = A + B ; Equating the coefficients of x,

1 = C — B; Equating the coefficients of x.

1
i‘eﬂ A — '_B i.e. B =—-

2
C-B=1
C L3 1 C=1 -
Ta=EL = B )
So its required partial fraction is given by
X 1 (x=1)

(x=Dx*+1) ~ 2G=1  2(x*«%I)
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Case — 4 : When the denominator contains repeated quadratic factors,
For each quadratic repeated factor (ax? + bx + ¢)" of the denominator, there corresponds the sum of
r partial fractions of the form.

Ax+B, A,x+B, A x+B,
" 42 +hx+o * (ax? + bx +c¢)* s (ax® +bx+¢)"
1 Ax+B Cx+D Ex+F
Forexample, (2, o) x2+B)? = (X +0) T (x2+P) T (x*+B)?
I Ax+B  Cx+D E

K+’ (x-B) T 4o T K+’ T x-P

Assignment

Resolving into partial fractions

84 +61x — x>
Bx+1)(16—x%)

S T
1+ x)(1+x%)




BINOMIAL THEOREM

FACTORIAL NOTATION
Let n be a positive integer. Then the product of the numbers 1-2 -3 ........ (n—1)nis called factorial n,
and is denoted by n ! orn !.
Thusn!=1-2-3 .......... (n—1)n
Ex: 1!'=1
21=12=2
31=1.2.3=6

4!=1.2.3.4=24

5!'=1.2.3.4.5=120
Deduction : n'=n(n-1)(n-2) (n-3)..3.2. 1.
=nfn-1)(n-2)(n-3) ....... 3.2.1.]
=n[(n-1)!]
Thus 5! =5x(4!),3!=3x 2N & 2! =2 x (1)
Factorial ‘n’ is the product of first 'n' natural numbers.
Example — 1 : Prove that :

n!
(n—r1)!

Sol": () n(n-1)(n-2) ....... nm-r+1)

@Onm-1))n-2)..... (n-r+1)=

n(n—-1)(n-2)....... (n=r+1).(n—r)!
- (n—r)!

n!

(n—r)!

[Multiplying N* and D" by (n —1)!] =

PERMUTATIONS

The different arrangements which can be made out of a given number of things by taking some or all
at a time, are called permutations.
Example — 1: All permutations, on arrangements made with the letters a, b, ¢ by taking two at a time are :
ab, ba, ac, ca, bc, cb.
Example — 2: All permutations made with the letters a, b, ¢ taking all of at a time are : abc, acb, bac, bca,
cab, cba.
Notations : Let r and n be positive integers. Such that 1 < r < n
Then the number of different permutations of n dissimilar things, taken r at a time is denoted by P(n,
ryor"P.
n!
Pn,r)=n(n-1)(n-2) ...... (n—r+l):(n_r)!
Note 2 : The number of all permutations of n different things taken all at a time is given by p(n, n) =
n!
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n! n!
We have P(n, r) = m = P(n,n)= a [Putting r = n]

n!
= nl= a [+ P(n,n)=n!]
n!
= 0= ; =1, We are now bound to define 0! =1,

Each of the different groups of selections which can be formed by taking some or all of numbers of
objects, irrespective of their arrangements is called a combination.

Suppose we want to select two out of three persons A, B and C. We may choose AB or BC or AC.

Clearly, AB and BA represent the same selection or group but they give rise to different arrangements.
Clearly in a group or selection, the orders in which the objects are arranged is immaterial.

Example — 1 : The different combinations formed of three letters a, b, ¢ taken two at a time are ab, bc, ac.
Example — 2 : The only combination that can be formed of three letters a, b, c taken all at a time is abc.
Example — 3 : Various groups of two out of four persons A, B, C Dare : AB, AC, AD, BC, BD, CD.

BINOMIAL THEOREM

The sum of two quantities a and b (i.e a + b) is called a binomial. Raising it to different powers, we get
(a+b)P’=1,(a+b)=a+b,
(a+b)>=a%>+2ab+b?
(a+b)’=a’+3a’ + 3ab’> + b}
(a+ b)* = a* + 4a’b + 6a’b? + 4ab’ + b*
(a+Db)’ =a’ + 5a%b + 10a’b? + 10a’b’® + 5ab* + b’
Observe the presence of the co-effieicnts of these expansions in the successive rows of the following
triangular arrangement.
Binomial Theorem for positive integral index :
Theorem : If x and y are real numbers, then for alln € N,
x+y)"=C(n,0)x"+C(n, 1) x" 'y + C(n, 2) X" 2 y> +..... +C (n, r) x*y" +.....+ C(n, n) y

e, X +y)= ZC(n,r) x2-Tyr
r=0
Deduction from Binomial Theorem :
(i) Replacing y by —y, we get :
x-y)r=Cm,0)x"-C(n, 1) x" 'y +C(n, 2) x"2y? + ...... + (=1)"C(n, n) y"

e, x—-y)= Z(—I)I.C(n,r) x"y'
r=0

SOME OBSERVATIONS IN A BINOMIAL EXPANSION
(1) The expansion of (x + a)" contains (n + 1) terms
@i1) Since C(n, r) = C(n, n —r), It follows that C(n, 0) = C(n, n), C(n, 1) = C(n, n— 1) and so on.
So the coefficient of the terms equidistant form the beginning and the end in a binomial expansion,
are equal.
(iii) Middle Terms in a Binomial Expansion :
Since the expansion of (x + a)" contains (n + 1) terms, so
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1 th
(a) (5 n+ 1) terms is the middle term, when n is even.

] th
(b) 5 (n+ 1)" term and [%(n +1)+ 1} terms are the two middle terms when n is odd.

General term in a binomial expansion :
In a binomial expansion, the (r + 1)th term, i.e., t | is taken as the general term.
=C(n, D)x" "y,
= 1y Cln, ) X"y
=C(n, 1) X',
(iv) In the expansion of (I —x)", we have t = (-1)"C(n, r) x".
Example -1 : Find the middle terms in the following :

7
2)(2—1
X

Sol" : The number of terms in the expansion is 8. Hence there are two middle terms
i.e. 4th and 5th terms.

(i) In the expansion of (x +y)", we have t |

(if) In the expansion of (x —y)", we have t |

(iii) In the expansion of (I +x)", we have t

3
3%
dthterm =, = t, , = (-1 C(7, 3) (2x3)". (;)

=-35x 16 xx®xx3=-560x°

4
1
Sthterm =t =t,  =(1)*C(7,4) (2x2)3.(x)

=35 x 8 x x0x x* =280 x?
Assignment

11
1
1.Find the coefficients of x° in the expansion of (X - ;)

12
2. Find the term independent of x in the expansion of (X it 7J
b

O & O




