NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha) ## **LESSON PLAN** **SUBJECT: Th-2 (STRENGTH OF MATERIAL)** ## **CHAPTER WISE DISTRIBUTION OF PERIODS** | SI.No. | Name of the chapter as per the Syllabus | No. of
Periods
as per
the
Syllabus | No. of
periods
actually
needed | |--------|--|--|---| | 1 | Simple Stress & Strain | 10 | 10 | | 2 | Thin cylindrical and spherical shell under internal pressure | 8 | 8 | | 3 | Two dimensional stress systems | 10 | 12 | | 4 | Bending moment& shear force | 10 | 12 | | 5 | Theory of simple bending | 10 | 10 | | 6 | Combined direct & Bending stresses | 6 | 6 | | 7 | Torsion | 6 | 6 | | | Total Period: | 60 | 64 | | Discipline:
AUTOMOBILE
ENGINEERING | Semester:
3rd | Name of the Teaching Faculty: Er. Nihar Ranjan Sahoo | | | |--|------------------|---|--|--| | | | SESSION : 2023-24 EXAMINATION : 2023 (W) | | | | Week | Class Day | Theory / Practical Topics | | | | 1 st | 1 st | Introduction to Strength of Material . | | | | | 2 nd | 1.0 Simple stress& strain 1.1 Types of load, stresses & strains,(Axial and tangential) Hooke's law, Young's modulus, bulk modulus, modulus of rigidity. | | | | | 3 rd | Poisson's ratio, derive the relation between three elastic constants, | | | | | 4 th | 1.2 Principle of super position, stresses in composite section | | | | | 1 st | 1.2 Principle of super position, stresses in composite section | | | | 2 nd | 2 nd | 1.3 Temperature stress, determine the temperature stress in composite bar (single core) | | | | | 3 rd | 1.3 Temperature stress, determine the temperature stress in composite bar (single core) | | | | | 4 th | 1.4 Strain energy and resilience, Stress due to gradually applied, suddenly applied and impact load | | | | 3 rd | 1 st | 1.4 Strain energy and resilience, Stress due to gradually applied, suddenly applied and impact load | | | | | 2 nd | 1.5 Simple problems on above. | | | | | 3 rd | 1.5 Simple problems on above. | | | | | 4 th | 2.0 Thin cylinder and spherical shell under internal pressure2.1 Definition of hoop and longitudinal stress, strain | | | | 4 th | 1 st | 2.1 Definition of hoop and longitudinal stress, strain | | | | | 2 nd | 2.2 Derivation of hoop stress, longitudinal stress, hoop strain, longitudinal strain and volumetric strain | | | | | 3 rd | 2.2 Derivation of hoop stress, longitudinal stress, hoop strain, longitudinal strain and volumetric strain | | | | | 4 th | 2.3 Computation of the change in length, diameter and volume | | | | 5 th | 1 st | 2.3 Computation of the change in length, diameter and volume | | | | | 2 nd | 2.4 Simple problems on above | | | | | 3 rd | 2.4 Simple problems on above | | | | | 4 th | 3.0 Two dimensional stress systems 3.1 Determination of normal stress, shear stress and resultant stress on oblique plane | | | | 6 th | 1 st | 3.1 Determination of normal stress, shear stress and resultant stress on oblique plane | | | | 6 th | 2 nd | 3.1 Determination of normal stress, shear stress and resultant stress on oblique plane | | |-------------------------|-----------------|--|--| | | 3 rd | 3.1 Determination of normal stress, shear stress and resultant stress on oblique plane | | | | 4 th | 3.2 Location of principal plane and computation of principal stress | | | 7 th | 1 st | 3.2 Location of principal plane and computation of principal stress | | | | 2 nd | 3.2 Location of principal plane and computation of principal stress | | | | 3 rd | 3.3 Location of principal plane and computation of principal stress and Maximum shear stress using Mohr's circle | | | | 4 th | 3.3 Location of principal plane and computation of principal stress and Maximum shear stress using Mohr's circle | | | 8 th | 1 st | 3.3 Location of principal plane and computation of principal stress and Maximum shear stress using Mohr's circle | | | | 2 nd | 3.3 Location of principal plane and computation of principal stress and Maximum shear stress using Mohr's circle | | | | 3 rd | 3.3 Location of principal plane and computation of principal stress and Maximum shear stress using Mohr's circle | | | | 4 th | 4.0 Bending moment& shear force 4.1 Types of beam and load | | | | 1 st | 4.2 Concepts of Shear force and bending moment | | | 9 th | 2 nd | 4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam | | | | 3 rd | 4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam | | | | 4 th | 4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam, simply supported beam | | | 10 th | 1 st | 4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam, simply supported beam | | | | 2 nd | 4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam, simply supported beam 4.3 Shear Force and Bending moment diagram and its salient reatures mustration in | | | | 3 rd | cantilever beam, simply supported beam and over hanging beam under point load | | | | 4 th | 4:उ Shear Force वित्ते अर्थ अर्थ के किया के किया कि कि किया | | | | 1 st | INTERNAL ASSESMENT | | | 11 th | 2 nd | INTERNAL ASSESMENT | | | | 3 rd | cantilever beam, simply supported beam and over hanging beam under point load | | | | 4 th | 4:3' SHE'ACTON'CE ATTOM BEAGING THOMEN GUARGE AND AND THE ACTON HOLD HO | | | 12 th | 1 st | and uniformly distributed load | | | 2 nd | 5.0 Theory of simple bending5.1 Assumptions in the theory of bending, | |-----------------|---| | 3 rd | 5.2 Bending equation, Moment of resistance, Section modulus& neutral axis. | | 4 th | 5.2 Bending equation, Moment of resistance, Section modulus& neutral axis. | | 1 st | 5.2 Bending equation, Moment of resistance, Section modulus& neutral axis. | | 2 nd | 5.2 Bending equation, Moment of resistance, Section modulus& neutral axis. | | 3 rd | 5.3 Solve simple problems. | | 4 th | 5.3 Solve simple problems. | | 1 st | 5.3 Solve simple problems. | | 2 nd | 5.3 Solve simple problems. | | 3 rd | 5.3 Solve simple problems. | | 4 th | 6.0 Combined direct & bending stresses 6.1 Define column | | 1 st | 6.2 Axial load, Eccentric load on column, | | 2 nd | 6.3 Direct stresses, Bending stresses, Maximum& Minimum stresses. Numerical problems on above. | | 3 rd | 6.3 Direct stresses, Bending stresses, Maximum& Minimum stresses. Numerical problems on above. | | 4 th | 6.4 Buckling load computation using Euler's formula (no derivation) in Columns with various end conditions | | 1 st | 6.4 Buckling load computation using Euler's formula (no derivation) in Columns with various end conditions | | 2 nd | 7.0 Torsion 7.0 Assumption of pure torsion | | 3 rd | 7.1 The torsion equation for solid and hollow circular shaft | | 4 th | 7.1 The torsion equation for solid and hollow circular shaft | | 1 st | 7.1 The torsion equation for solid and hollow circular shaft | | 2 nd | 7.2 Comparison between solid and hollow shaft subjected to pure torsion | | 3 rd | 7.2 Comparison between solid and hollow shaft subjected to pure torsion | | 4 th | Revision . | | | 3 rd 4 th 1 st 2 nd 3 rd 3 rd 4 th 1 st 2 nd 3 rd 3 rd 4 th 1 st 2 nd 3 rd 4 th 1 st 2 nd 3 rd 4 th 1 st |