

NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha)

LESSON PLAN

SUBJECT: Th-1 (STRUCTURAL MECHANICS)

CHAPTER WISE DISTRIBUTION OF PERIODS

SI.No.	Name of the chapter as per the Syllabus	No. of Periods as per the Syllabus	No. of periods actually needed
1	Review of Basic Concepts	4	5
2	Simple and Complex Stress, Strain	15	17
3	Stresses in Beams	10	12
4	Columns and Struts	4	4
5	Shear Force and Bending Moment	12	14
6	Slope and Deflection	10	10
7	Indeterminate Beams	10	10
8	Trusses and Frames	10	10
	Total Period:	75	82

Discipline: CIVIL ENGINEERING	Semester: 3rd	Name of the Teaching Faculty: Er. Kumar Swatiranjan	
		SESSION : 2023-24 EXAMINATION : 2023 (W)	
Week	Class Day	Topics to be Covered	
1 st	1 st	 Review Of Basic Concepts 1.1 Basic Principle of Mechanics: Force, Moment, support conditions, Conditions of equilibrium, C.G & MI, Free body diagram 	
	2 nd	1.1 Basic Principle of Mechanics: Force, Moment, support conditions, Conditions of equilibrium, C.G & MI, Free body diagram	
	3 rd	1.2 Review of CG and MI of different sections	
	4 th	1.2 Review of CG and MI of different sections	
	5 th	1.2 Review of CG and MI of different sections	
2 nd	1 st	 Simple And Complex Stress, Strain Simple Stresses and Strains Introduction to stresses and strains: Mechanical properties of materials – Rigidity, Elasticity, Plasticity, Compressibility, Hardness, Toughness, Stiffness, Brittleness, Ductility, Malleability, Creep, Fatigue, Tenacity, Durability 	
	2 nd	2.1 Simple Stresses and Strains Types of stresses -Tensile, Compressive and Shear stresses	
	3 rd	 2.1 Simple Stresses and Strains Types of strains - Elongation and Contraction, Longitudinal and Lateral strains, Poisson's Ratio, Volumetric strain, computation of stress, strain, Poisson's ratio, change in dimensions and volume etc 	
	4 th	2.1 Simple Stresses and Strains Hooke's law - Elastic Constants, Derivation of relationship between the elastic constants	
	5 th	2.1 Simple Stresses and Strains Hooke's law - Elastic Constants, Derivation of relationship between the elastic constants	
	1 st	2.2 Application of simple stress and strain in engineering field Behaviour of ductile and brittle materials under direct loads, Stress Strain curve of a ductile material	
3 rd	2 nd	2.2 Application of simple stress and strain in engineering fieldLimit of proportionality, Elastic limit, Yield stress, Ultimate stress,Breaking stress	
	3 rd	2.2 Application of simple stress and strain in engineering field Percentage elongation, Percentage reduction in area, Significance of percentage elongation and reduction in area of cross section	
	4 th	2.2 Application of simple stress and strain in engineering field Deformation of prismatic bars due to uniaxial load	
	5 th	2.2 Application of simple stress and strain in engineering field Deformation of prismatic bars due to its self weight	

r	1	
4 th	1 st	2.2 Application of simple stress and strain in engineering field Deformation of prismatic bars due to its self weight
	2 nd	2.2 Application of simple stress and strain in engineering field Deformation of prismatic bars due to its self weight
	3 rd	2.3 Complex stress and strain Major and minor principal stresses and their orientations
	4 th	2.3 Complex stress and strain Major and minor principal stresses and their orientations
	5 th	2.3 Complex stress and strain Mohr's Circle and its application to solve problems of complex stresses
5 th	1 st	2.3 Complex stress and strain Mohr's Circle and its application to solve problems of complex stresses
	2 nd	2.3 Complex stress and strain Mohr's Circle and its application to solve problems of complex stresses
	3 rd	 3. Stresses In Beams and Shafts 3.1 Stresses in beams due to bending Bending stress in beams – Theory of simple bending – Assumptions – Moment of resistance – Equation for Flexure– Flexural stress distribution
	4 th	3.1 Stresses in beams due to bending Curvature of beam – Position of N.A. and Centroidal Axis – Flexural rigidity – Significance of Section modulus.
	5 th	3.2 Shear stresses in beams Shear stress distribution in beams of rectangular, circular and standard sections symmetrical about vertical axis.
6 th	1 st	3.2 Shear stresses in beams Shear stress distribution in beams of rectangular, circular and standard sections symmetrical about vertical axis
	2 nd	3.3 Stresses in shafts due to torsion Concept of torsion, basic assumptions of pure torsion, torsion of solid and hollow circular sections, polar moment of inertia,
	3 rd	3.3 Stresses in shafts due to torsion Torsional shearing stresses, angle of twist, torsional rigidity, equation of torsion
	4 th	3.4 Combined bending and direct stresses Combination of stresses, Combined direct and bending stresses, Maximum and Minimum stresses in Sections
	5 th	3.4 Combined bending and direct stresses Conditions for no tension, Limit of eccentricity, Middle third/fourth rule
7 th	1 st	3.4 Combined bending and direct stresses Conditions for no tension, Limit of eccentricity, Middle third/fourth rule
	2 nd	3.4 Combined bending and direct stresses Core or Kern for square, rectangular and circular sections, chimneys, dams and retaining walls

		3.4 Combined bending and direct stresses
	3 rd	Core or Kern for square, rectangular and circular sections, chimneys, dams and
	5	retaining walls
		3.4 Combined bending and direct stresses
_th	4 th	Core or Kern for square, rectangular and circular sections, chimneys, dams and
7 th	4	retaining walls
		4. Columns and Struts
	5 th	
		4.1 Columns and Struts, Definition, Short and Long columns, End conditions,
		Equivalent length / Effective length, Slenderness ratio
	1 st	4.1 Axially loaded short and long column, Euler's theory of long columns
	2 nd	4.1 Critical load for Columns with different end conditions
8 th	3 rd	4.1 Critical load for Columns with different end conditions
		5. Shear Force and Bending Moment
	4 th	5.1 Types of loads and beams
		Types of Loads: Concentrated (or) Point load, Uniformly Distributed load (UDL)
	5 th	5.1 Types of loads and beams
		Types of Supports: Simple support, Roller support, Hinged support, Fixed support
	1 st	5.1 Types of loads and beams
		Types of Reactions: Vertical reaction, Horizontal reaction, Moment reaction
	nd	5.1 Types of loads and beams
	2 nd	Types of Beams based on support conditions: Calculation of support reactions using
		equations of static equilibrium
th	ord	5.1 Types of loads and beams
9 th	3 rd	Types of Beams based on support conditions: Calculation of support reactions using
		equations of static equilibrium
	4 th	5.2 Shear force and bending moment in beams
		Shear Force and Bending Moment: Signs Convention for S.F. and B.M
	th	5.2 Shear force and bending moment in beams
		S.F and B.M of general cases of determinate beams with concentrated loads and udl
		only
	1 st	5.2 Shear force and bending moment in beams
	1	S.F and B.M diagrams for Cantilevers beams
	2 nd	5.2 Shear force and bending moment in beams
		S.F and B.M diagrams for Simply supported beams and Over hanging beams
+h	3 rd	5.2 Shear force and bending moment in beams
10 th		S.F and B.M diagrams for Simply supported beams and Over hanging beams
	4 th	5.2 Shear force and bending moment in beams
		Position of maximum BM, Point of contra flexure
	5 th	
		5.2 Shear force and bending moment in beams Relation between intensity of load, S.F and B.M.
		הפומנוטה שבנשפבו ווונפווגוני טו וטמע, גד מווע ב.ועו.

	1 st	INTERNAL ASSESMENT
11 th	2 nd	INTERNAL ASSESMENT
	3 rd	5.2 Shear force and bending moment in beams Relation between intensity of load, S.F and B.M.
	4 th	5.2 Shear force and bending moment in beams Relation between intensity of load, S.F and B.M.
	5 th	6. Slope and Deflection6.1 IntroductionShape and nature of elastic curve (deflection curve)
	1 st	6.1 Introduction Shape and nature of elastic curve (deflection curve)
	2 nd	6.1 Introduction Relationship between slope, deflection and curvature (No derivation)
12 th	3 rd	6.1 Introduction Relationship between slope, deflection and curvature (No derivation)
	4 th	6.1 Introduction Importance of slope and deflection
	5 th	6.2 Slope and deflection of cantilever and simply supported beams under concentrated and uniformly distributed load (by Double Integration method, Macaulay's method).
13 th	1 st	6.2 Slope and deflection of cantilever and simply supported beams under concentrated and uniformly distributed load (by Double Integration method, Macaulay's method).
	2 nd	6.2 Slope and deflection of cantilever and simply supported beams under concentrated and uniformly distributed load (by Double Integration method, Macaulay's method).
	3 rd	6.2 Slope and deflection of cantilever and simply supported beams under concentrated and uniformly distributed load (by Double Integration method, Macaulay's method).
	4 th	6.2 Slope and deflection of cantilever and simply supported beams under concentrated and uniformly distributed load (by Double Integration method, Macaulay's method).
	5 th	7. Indeterminate Beams 7.1Indeterminacy in beams, Principle of consistent deformation/compatibility
	1 st	7.1Indeterminacy in beams, Principle of consistent deformation/compatibility
	2 nd	7.1 Indeterminate Beams Analysis of propped cantilever
14 th	3 rd	7.1 fixed and two span continuous beams by principle of superposition
	4 th	7.1 fixed and two span continuous beams by principle of superposition
	5 th	7.1 fixed and two span continuous beams by principle of superposition

	-	
	1 st	7.1 fixed and two span continuous beams by principle of superposition
15 th	2 nd	7.1SF and BM diagrams (point load and udl covering full span)
	3 rd	7.1SF and BM diagrams (point load and udl covering full span)
	4 th	7.1SF and BM diagrams (point load and udl covering full span)
	5 th	 8. Trusses 8.1 Introduction Types of trusses, statically determinate and indeterminate trusses
	1 st	8.1 Introduction Degree of indeterminacy, stable and unstable trusses
16 th	2 nd	8.1 Introduction Degree of indeterminacy, stable and unstable trusses
	3 rd	8.1 Introduction advantages of trusses
	4 th	8.2 Analysis of trusses Analytical method (Method of joints, method of Section)
	5 th	8.2 Analysis of trusses Analytical method (Method of joints, method of Section)
	1 st	8.2 Analysis of trusses Analytical method (Method of joints, method of Section)
17 th	2 nd	8.2 Analysis of trusses Analytical method (Method of joints, method of Section)
	3 rd	8.2 Analysis of trusses Analytical method (Method of joints, method of Section)
	4 th	8.2 Analysis of trusses Analytical method (Method of joints, method of Section)
	5 th	Revision