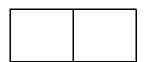


NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha)

LESSON PLAN

SUBJECT : Th-1 (STRUCTURAL DESIGN-I)

SI.No.	Name of the chapter as per the Syllabus	No. of Periods as per the Syllabus	No. of periods actually needed
1	Working stress method (WSM)	5	5
2	Philosophy of Limit state method (LSM)	3	3
3	Analysis and design of singly and double reinforced sections (LSM)	15	15
4	Shear, Bond and Development Length (LSM)	4	4
5	Analysis and Design of T-Beam (LSM)	15	15
6	Analysis and Design of Slab and Stair case (LSM)	15	15
7	Design of Axially loaded columns and Footings (LSM)	18	15
	Total Period:	75	72


CHAPTER WISE DISTRIBUTION OF PERIODS

Discipline: CIVIL ENGINEERING	Semester: 4TH	Name of the Teaching Faculty: Er. Kumar Swatiranjan		
		SESSION : 2023-24 EXAMINATION : 2024(S)		
Week	Class Day	/ Topics to be Covered		
1 st	1 st	1 Working stress method (WSM) 1.1 Objectives of design and detailing. State the different methods of design of		
	2 nd	1.2 Introduction to reinforced concrete, R.C. sections their behavior, grades of concrete and steel. Permissible stresses, assumption in W.S.M.		
	3 rd	1.3 Flexural design and analysis of single reinforced sections from first principles.		
	4 th	1.4 Concept of under reinforced, over reinforced and balanced sections		
	5 th	1.5 Advantages and disadvantages of WSM, reasons for its obsolescence		
2 nd	1 st	 Philosophy Of Limit State Method (LSM) 2.1 Definition, Advantages of LSM over WSM, IS code suggestions regarding design philosophy. 		
	2 nd	2.2 Types of limit states, partial safety factors for materials strength, characteristic strength, characteristic load, design load, loading on structure as per I.S. 875		
	3 rd	2.3 Study of I.S specification regarding spacing of reinforcement in slab, cover to reinforcement in slab, beam column & footing, minimum reinforcement in slab, beam & column, lapping, anchorage, effective span for beam & slab		
	4 th	3 Analysis and Design of Single and Double Reinforced Sections (LSM) 3.1 Limit state of collapse (flexure)		
	5 th	3.1Assumptions, Stress-Strain relationship for concrete and steel, neutral axis		
	1 st	3.1 Stress block diagram and strain diagram for singly reinforced section.		
	2 nd	3.2 Concept of under- reinforced, over-reinforced and limiting section, neutral axis co-efficient.		
3 rd	3 rd	3.2limiting value of moment of resistance and limiting percentage of steel required for limiting singly R.C. section.		
	4 th	3.3 Analysis and design: determination of design constants, moment of resistance and area of steel for rectangular sections		
	5 th	3.3 Analysis and design: determination of design constants, moment of resistance and area of steel for rectangular sections		
	1 st	3.3 Analysis and design: determination of design constants, moment of resistance and area of steel for rectangular sections		
4 th	2 nd	3.3 Analysis and design: determination of design constants, moment of resistance		
	3 rd	and area of steel for rectangular sections 3.3 Analysis and design: determination of design constants, moment of resistance and area of steel for rectangular sections		

		2.2 Analysis and design, determination of design constants, memory of resistance
4 th	4 th	3.3 Analysis and design: determination of design constants, moment of resistance
		and area of steel for rectangular sections
	5 th	3.3 Analysis and design: determination of design constants, moment of resistance
	-	and area of steel for rectangular sections
	1 st	3.3 Analysis and design: determination of design constants, moment of resistance
	2 nd	and area of steel for rectangular sections
		3.4 Necessity of doubly reinforced section, design of doubly reinforced
	2	rectangular section
	3 rd	3.4 Necessity of doubly reinforced section, design of doubly reinforced
+h	3	rectangular section
5 th		4 Shear, Bond and Development Length (LSM)
	4 th	4.1 Nominal shear stress in R.C. section, design shear strength of concrete,
	4	maximum shear stress, design of shear reinforcement, minimum shear
	th	4.2 Bond and types of bond, bond stress, check for bond stress, development
	5 th	length in tension and compression, anchorage value for hooks 900 bend and 450
		bend standards lapping of bars, check for development length
	1 st	4.3 Numerical problems on deciding whether shear reinforcement is required or
	-	not, check for adequacy of the section in shear.
	2 nd	4.3Design of shear reinforcement; Minimum shear reinforcement in beams
		(Explain through examples only).
		5 Analysis and Design of T-Beam (LSM)
6 th	3 rd	5.1 General features, advantages, effective width of flange as per IS: 456-2000
U		code provisions.
		5 Analysis and Design of T-Beam (LSM)
	4 th	5.1 General features, advantages, effective width of flange as per IS: 456-2000
		code provisions.
		5 Analysis and Design of T-Beam (LSM)
	5 th	5.1 General features, advantages, effective width of flange as per IS: 456-2000
		code provisions.
		5 Analysis and Design of T-Beam (LSM)
	1 st	5.1 General features, advantages, effective width of flange as per IS: 456-2000
		code provisions.
		5 Analysis and Design of T-Beam (LSM)
	2 nd	5.1 General features, advantages, effective width of flange as per IS: 456-2000
		code provisions.
		5 Analysis and Design of T-Beam (LSM)
7 th	3 rd	5.1 General features, advantages, effective width of flange as per IS: 456-2000
		code provisions.
		5 Analysis and Design of T-Beam (LSM)
	4 th	5.1 General features, advantages, effective width of flange as per IS: 456-2000
		code provisions.
	5 th	5 Analysis and Design of T-Beam (LSM)
		5.1 General features, advantages, effective width of flange as per IS: 456-2000
		code provisions.
	1 st	5.2 Analysis of singly reinforced T-Beam, strain diagram & stress diagram, depth
8 th		of neutral axis.
		טו וובענומו מגוג.

r	1	
8 th	2 nd	5.2 Analysis of singly reinforced T-Beam, strain diagram & stress diagram, depth of neutral axis.
	3 rd	5.2 Analysis of singly reinforced T-Beam, strain diagram & stress diagram, depth of neutral axis.
	4 th	5.2 Moment of resistance of T-beam section with neutral axis lying within the flange.
	5 th	5.2 Moment of resistance of T-beam section with neutral axis lying within the flange.
9 th	1 st	5.3 Simple numerical problems on deciding effective flange width. (Problems only on finding moment of resistance of T-beam section when N.A. lies within or up to the bottom of flange shall be asked in written examination).
	2 nd	5.3 Simple numerical problems on deciding effective flange width. (Problems only on finding moment of resistance of T-beam section when N.A. lies within or up to the bottom of flange shall be asked in written examination).
	3 rd	 6 Analysis and Design of Slab and Stair case (LSM) 6.1 Design of simply supported one-way slabs for flexure check for deflection control and shear.
	4 th	 6 Analysis and Design of Slab and Stair case (LSM) 6.1 Design of simply supported one-way slabs for flexure check for deflection control and shear.
	5 th	 6 Analysis and Design of Slab and Stair case (LSM) 6.1 Design of simply supported one-way slabs for flexure check for deflection control and shear.
10 th	1 st	6.2 Design of one-way cantilever slabs and cantilevers chajjas for flexure check for deflection control and check for development length and shear.
	2 nd	6.2 Design of one-way cantilever slabs and cantilevers chajjas for flexure check for deflection control and check for development length and shear.
	3 rd	6.2 Design of one-way cantilever slabs and cantilevers chajjas for flexure check for deflection control and check for development length and shear.
	4 th	6.3 Design of two-way simply supported slabs for flexure with corner free to lift.
	5 th	6.3 Design of two-way simply supported slabs for flexure with corner free to lift.
11 th	1 st	6.3 Design of two-way simply supported slabs for flexure with corner free to lift.
	2 nd	6.4 Design of dog-legged staircase
	3 rd	INTERNAL ASSESMENT.
	4 th	INTERNAL ASSESMENT.
	5 th	6.4 Design of dog-legged staircase
12 th	1 st	6.4 Design of dog-legged staircase

12 th	2 nd	6.5 Detailing of reinforcement in stairs spanning longitudinally.
	3 rd	6.5 Detailing of reinforcement in stairs spanning longitudinally.
	4 th	6.5 Detailing of reinforcement in stairs spanning longitudinally.
	5 th	7. Design of axially loaded columns and footings (LSM)
13 th	1 st	7.1 Assumptions in limit state of collapse- compression.
	2 nd	7.2 Definition and classification of columns, effective length of column.
	3 rd	7.2Specification for minimum reinforcement; cover, maximum reinforcement, number of bars in rectangular,square and circular sections, diameter and spacing of lateral ties
	4 th	7.2Specification for minimum reinforcement; cover, maximum reinforcement, number of bars in rectangular,square and circular sections, diameter and spacing of lateral ties
	5 th	7.3 Analysis and design of axially loaded short square, rectangular and circular columns (with lateral ties only).
	1 st	7.3 Analysis and design of axially loaded short square, rectangular and circular columns (with lateral ties only).
	2 nd	7.3 Analysis and design of axially loaded short square, rectangular and circular columns (with lateral ties only).
14 th	3 rd	7.3 Analysis and design of axially loaded short square, rectangular and circular columns (with lateral ties only).
	4 th	7.3 Analysis and design of axially loaded short square, rectangular and circular columns (with lateral ties only).
	5 th	7.4 Types of footing, Design of isolated square column footing of uniform thickness for flexure and shear.
15 th	1 st	7.4 Types of footing, Design of isolated square column footing of uniform thickness for flexure and shear.
	2 nd	7.4 Types of footing, Design of isolated square column footing of uniform thickness for flexure and shear.
	3 rd	7.4 Types of footing, Design of isolated square column footing of uniform thickness for flexure and shear.
	4 th	7.4 Types of footing, Design of isolated square column footing of uniform thickness for flexure and shear.
	5 th	Revision

