

## NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA)



## (Approved by AICTE& affiliated to SCTE&VT, Odisha)

## **LESSON PLAN**

**SUBJECT: Th1. ENGINEERING MATHEMATICS – III** 

## **CHAPTER WISE DISTRIBUTION OF PERIODS**

| SI.No. | Name of the chapter as per the Syllabus | No. of Periods as per the Syllabus | No. of<br>periods<br>actually<br>needed |
|--------|-----------------------------------------|------------------------------------|-----------------------------------------|
| 1      | Complex Numbers                         | 6                                  | 6                                       |
| 2      | Matrices                                | 4                                  | 4                                       |
| 3      | Differential Equations                  | 10                                 | 10                                      |
| 4      | Laplace transforms                      | 12                                 | 12                                      |
| 5      | Fourier Series                          | 12                                 | 12                                      |
| 6      | Numerical Methods                       | 4                                  | 4                                       |
| 7      | Finite difference & interpolation       | 12                                 | 12                                      |
|        | TOTAL                                   | 60                                 | 60                                      |

| Discipline:<br>EE/EEE | Semester:<br>3RD | Name of the Teaching Faculty: Mr SUBAS CHANDRA DASH                                                 |
|-----------------------|------------------|-----------------------------------------------------------------------------------------------------|
| Week                  | Class Day        | Theory / Practical Topics                                                                           |
| 1ST                   | 1 <sup>st</sup>  | 1. Complex Numbers                                                                                  |
|                       |                  | Real and Imaginary numbers                                                                          |
|                       | 2 <sup>nd</sup>  | 1.2 Complex numbers, conjugate complex numbers, Modulus and Amplitude of a                          |
|                       |                  | complex number                                                                                      |
|                       |                  | Geometrical Representation of Complex Numbers. Properties of Complex Numbers                        |
|                       | 4 <sup>th</sup>  | 1.5 Determination of three cube roots of unity and their properties.                                |
|                       | 1 <sup>st</sup>  | 1.6 De Moivre's theorem                                                                             |
|                       | 2 <sup>nd</sup>  | 1.7 Solve problems on 1·1 - 1·6                                                                     |
|                       |                  | 2. Matrices                                                                                         |
| 2ND                   | 3 <sup>rd</sup>  | Define rank of a matrix.                                                                            |
|                       |                  | Perform elementary row transformations to determine the rank of a                                   |
|                       | +h               | 2.3. State Rouche's theorem for consistency of a system of linear equations in                      |
|                       | 4 <sup>th</sup>  | unknowns.                                                                                           |
|                       | 1 <sup>st</sup>  | 2.4. Solve equations in three unknowns testing consistency                                          |
|                       | 2 <sup>nd</sup>  | 2.5. Solve problems on 2.1 – 2.4                                                                    |
|                       |                  | 3. Linear Differential Equations                                                                    |
| 3RD                   | 3 <sup>rd</sup>  | Define Homogeneous and Non – Homogeneous Linear Differential Equations with                         |
|                       |                  | constant coefficients with examples                                                                 |
|                       | 4 <sup>th</sup>  | 3.2. Find general solution of linear Differential Equations in terms of C.F. and P.I.               |
|                       | 1 <sup>st</sup>  | 3.2. Find general solution of linear Differential Equations in terms of C.F. and P.I.               |
| 4TH                   | 2 <sup>nd</sup>  | 3.3. Derive rules for finding C.F. And P.I. in terms of operator D, excluding.                      |
|                       | 3 <sup>rd</sup>  | 3.3. Derive rules for finding C.F. And P.I. in terms of operator D, excluding.                      |
|                       | 4 <sup>th</sup>  | 3.4. Define partial differential equation (P.D.E)                                                   |
|                       | 1 <sup>st</sup>  | 3.5. Form partial differential equations by eliminating arbitrary constants and arbitrary functions |
| 5TH                   | 2 <sup>nd</sup>  | 3.5. Form partial differential equations by eliminating arbitrary constants and arbitrary functions |
|                       | 3 <sup>rd</sup>  | 3.6. Solve partial differential equations of the form Pp + Qq = R                                   |
|                       | 4 <sup>th</sup>  | 3.7. Solve problems on 3.1- 3.6                                                                     |
|                       | 1 <sup>st</sup>  | 4. Laplace Transforms                                                                               |
| 6ТН                   |                  | Define Gamma function and and find .                                                                |
|                       | 2 <sup>nd</sup>  | 4.2. Define Laplace Transform of a function and Inverse Laplace Transform .                         |
|                       | 3 <sup>rd</sup>  | 4.2. Define Laplace Transform of a function and Inverse Laplace Transform .                         |
|                       | 4 <sup>th</sup>  | 4.2. Define Laplace Transform of a function and Inverse Laplace Transform .                         |
|                       | 1 <sup>st</sup>  | 4.3. Derive L.T. of standard functions and explain existence conditions of L.T.                     |

| 7TH  | 2 <sup>nd</sup> | 4.3. Derive L.T. of standard functions and explain existence conditions of L.T.                             |
|------|-----------------|-------------------------------------------------------------------------------------------------------------|
| /    | 3 <sup>rd</sup> | 4.4. Explain linear, shifting property of L.T.                                                              |
|      | 4 <sup>th</sup> |                                                                                                             |
|      | 4               | 4.5. Formulate L.T. of derivatives, integrals, multiplication by and division by .                          |
|      | 1 <sup>st</sup> | 4.5. Formulate L.T. of derivatives, integrals, multiplication by and division by .                          |
| 8TH  | 2 <sup>nd</sup> | 4.6. Derive formulae of inverse L.T. and explain method of partial fractions .                              |
|      | 3 <sup>rd</sup> | 4.6. Derive formulae of inverse L.T. and explain method of partial fractions .                              |
|      | 4 <sup>th</sup> | 4.7. solve problem on 4.1- 4.6                                                                              |
|      | 1 <sup>st</sup> | 5. Fourier Series                                                                                           |
|      |                 | Define periodic functions 5.2. State Dirichlet's condition for the Fourier expansion of a function and it's |
|      | 2 <sup>nd</sup> | convergence                                                                                                 |
| 9TH  |                 | 5.2. State Dirichlet's condition for the Fourier expansion of a function and it's                           |
|      | 3 <sup>rd</sup> | convergence                                                                                                 |
|      | - th            | 5.2. State Dirichlet's condition for the Fourier expansion of a function and it's                           |
|      | 4 <sup>th</sup> | convergence                                                                                                 |
|      | 1 <sup>st</sup> | 5.3. Express periodic function F(X) satisfying Dirichlet's conditions as a Fourier                          |
|      |                 | series.                                                                                                     |
| 10TH | 2 <sup>nd</sup> | 5.3. Express periodic function F(X) satisfying Dirichlet's conditions as a Fourier series.                  |
|      | 3 <sup>rd</sup> | 5.4. State Euler's formulae                                                                                 |
|      | 4 <sup>th</sup> | 5.5. Define Even and Odd functions and find Fourier Series in                                               |
|      | 1 <sup>st</sup> | 5.5. Define Even and Odd functions and find Fourier Series in                                               |
|      |                 | 5.6. Obtain F.S of continuous functions and functions having points of                                      |
| 11TH | 2 <sup>nd</sup> | discontinuity                                                                                               |
| 1111 | 3 <sup>rd</sup> | 5.6. Obtain F.S of continuous functions and functions having points of                                      |
|      |                 | discontinuity                                                                                               |
|      | 4 <sup>th</sup> | 5.7. Solve problems on 5.1 – 5.6                                                                            |
|      | , st            | 6. Numerical Methods  Appraise limitation of analytical methods of solution of Algebraic                    |
|      | 1 <sup>st</sup> | Equations.                                                                                                  |
|      |                 | Equations.                                                                                                  |
|      | - nd            | Derive Iterative formula for finding the solutions of Algebraic Equations by :                              |
| 12TH | 2 <sup>nd</sup> | Bisection method                                                                                            |
|      | ·               | Newton- Raphson method                                                                                      |
|      |                 | Derive Iterative formula for finding the solutions of Algebraic Equations by :                              |
|      | 3 <sup>rd</sup> | Bisection method                                                                                            |
|      |                 | Newton- Raphson method                                                                                      |
|      | 4 <sup>th</sup> | 6.3. solve problems on 6.2                                                                                  |
|      | 1 <sup>st</sup> | 7. Finite difference and interpolation                                                                      |
|      | _               | Explain finite difference and form table of forward and backward difference                                 |
| 13TH | 2 <sup>nd</sup> | 7.2. Define shift Operator and establish relation between & difference operator.                            |

|        | 3 <sup>rd</sup> | 7.3. Derive Newton's forward and backward interpolation formula for equal intervals |
|--------|-----------------|-------------------------------------------------------------------------------------|
|        | 4 <sup>th</sup> | 7.4. State Lagrange's interpretation formula for unequal intervals.                 |
| 14TH   | 1 <sup>st</sup> | Explain numerical integration and state: Newton's Cote's formula                    |
|        | 2 <sup>nd</sup> | 7.5.1. Newton's Cote's formula                                                      |
|        | 3 <sup>rd</sup> | 7.5.2. Trapezoidal rule                                                             |
|        | 4 <sup>th</sup> | 7.5.2. Trapezoidal rule                                                             |
| 15TH - | 1 <sup>st</sup> | 7.5.2. Trapezoidal rule                                                             |
|        | 2 <sup>nd</sup> | 7.5.3. Simpson's 1/3rd rule                                                         |
|        | 3 <sup>rd</sup> | 7.5.3. Simpson's 1/3rd rule                                                         |
|        | 4 <sup>th</sup> | 7.6. Solve problems on 7.1- 7.5                                                     |