NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha) ## **LESSON PLAN** **SUBJECT: Th-4 (RENEWABLE ENERGY)** ## **CHAPTER WISE DISTRIBUTION OF PERIODS** | SI.No. | Name of the chapter as per the Syllabus | No. of
Periods
as per
the
Syllabus | No. of periods actually needed | |--------|---|--|--------------------------------| | 1 | Energy Situation and Renewable Energy Sources | 5 | 5 | | 2 | Solar Radiation & Collectors | 6 | 6 | | 3 | Low-Temperature Applications of Solar Energy | 6 | 6 | | 4 | Passive Space Conditioning & Collectors | 7 | 7 | | 5 | Solar Thermal Power Plants | 8 | 8 | | 6 | Solar Photovoltaics | 8 | 8 | | 7 | Wind Energy | 5 | 5 | | 8 | Wind Energy Converters | 8 | 8 | | 9 | Energy economics | 7 | 7 | | 10 | Tutorial | 15 | 15 | | | TOTAL | 75 | 75 | | iscipline:
ELECTRICAL&E
LECTRONICS
ENGG. | Semester:
6TH | Name of the Teaching Faculty: RANJAN KUMAR PADHI | |---|------------------|--| | Week | Class Day | Theory / Practical Topics | | | 1 st | Energy Situation and Renewable Energy Sources Renewable and Non-renewable Energy Sources | | | 2 nd | Energy and Environment | | 1 st | 3 rd | Origin of Renewable Energy Sources | | | 4 th | Potential of Renewable Energy Sources | | | 5 th | CLASS TEST | | | 1 st | Direct-use Technology | | | 2 nd | Solar Radiation & Collectors Solar Radiation Through Atmosphere | | 2 nd | 3 rd | Terrestrial Solar Radiation | | | 4 th | Measurement of Solar Radiation | | | 5 th | CLASS TEST | | | 1 st | Measurement of Solar Radiation | | | 2 nd | Classification of Solar Radiation Instruments | | 3 rd | 3 rd | Flat Plate Collectors | | | 4 th | Optical Characteristics | | | 5 th | CLASS TEST | |------------------------|-----------------|--| | | 1 st | Low-Temperature Applications of Solar Energy Swimming Pool Heating | | 4 th | 2 nd | Solar water Heating Systems | | | 3 rd | Solar water Heating Systems | | | 4 th | Natural Convection water Heating Systems | | | 5 th | CLASS TEST | | 5 th | 1 st | Solar Drying | | | 2 nd | Solar Pond | | | 3 rd | Passive Space Conditioning & Collectors Principle Space conditioning | | | 4 th | Passive building concepts- Heating, Direct gain, Indirect Gain, Passive Cooling, Shading, Paints, Collings | | | 5 th | CLASS TEST | | | 1 st | Passive building concepts- Heating, Direct gain, Indirect Gain, Passive Cooling, Shading, Paints, Collings | | 6 th | 2 nd | Passive building concepts- Heating, Direct gain, Indirect Gain, Passive Cooling, Shading, Paints, Collings | | | 3 rd | Construction of Concentrator | | | 4 th | Construction of Concentrator | | | 5 th | CLASS TEST | | | | Energy losses | |------------------------|-----------------|--| | 7 th | 1 st | | | | | Solar Thermal Power Plants | | | 2 nd | Introduction | | | | Salar Callaction System | | | 3 rd | Solar Collection System | | | | | | | 4 th | Solar Collection System | | | | | | | 5 th | | | | | CLASS TEST | | | | | | | 1 st | Thermal Storage for Solar Power Plants | | | | | | | 2 nd | Thermal Storage for Solar Power Plants | | - th | | | | 8 th | 3 rd | Capacity Factor and Solar Multiple | | | 4 th | Capacity Factor and Solar Multiple | | | | | | | 5 th | | | | | CLASS TEST | | 9 th | | Energy Conversion | | | 1 st | | | | 2 nd | Solar Photovoltaics | | | | Band Theory of Solids, Physical Processes in a Solar Cell, | | | 3 rd | | | | | Solar Cell Characteristics | | | 4 th | | | | | Equivalent Circuit Diagram of Solar Cells | | | 5 th | | | | | CLASS TEST | | | <u> </u> | Learner rae . | | | | <u></u> | |-------------------------|-----------------|---| | 10 th | 1 st | Cell Types - Crystalline Silicon Solar Cell , Solar Cells for Concentrating Photovoltaic Systems , Dye –sensitized Solar Cell (DSC) | | | 2 nd | Solar Module | | | 3 rd | Further System Components -Solar inverters ,Mounting Systems,Storage Batteries ,Other System Components | | | 4 th | Grid-independent Systems -System Configuration | | | 5 th | CLASS TEST | | 11 th | 1 st | Grid-connected Systems -Small Roof Top Systems ,Medium-scale PV
Generator ,Centralized System | | | 2 nd | Wind Energy Wind Flow and Wind Direction | | | 3 rd | Wind Measurements Measurement of Pressure Head | | | 4 th | Hot wire Anemometer | | | 5 th | CLASS TEST | | 12 th | 1 st | Cup Anemometer (Robinson's Anemometer | | | 2 nd | Wind Direction Indicators | | | 3 rd | Wind Energy Converters Historical Development | | | 4 th | Aerodynamic of Rotor Blade -Wind Stream Profile -Buoyancy Coefficient and the Drag Coefficient | | | 5 th | CLASS TEST | | | | T | |------------------|-----------------|---| | 13 th | 1 st | Aerodynamic of Rotor Blade -Wind Stream Profile -Buoyancy Coefficient and the Drag Coefficient | | | 2 nd | Components of a Wind Power Plant -Wind Turbine -Tower -Electric Generators –Foundation | | | 3 rd | Components of a Wind Power Plant -Wind Turbine -Tower -Electric Generators —Foundation | | | 4 th | Power Control -Slow Rotors; Poor Control Mechanism -Control of Fast
Rotors | | | 5 th | CLASS TEST | | 14 th | 1 st | Power Control -Slow Rotors; Poor Control Mechanism -Control of Fast
Rotors | | | 2 nd | Energy economics Present worth, Life cycle costing (LCC), Annual Life cycle costing(ALCC), Annual savings. calculations for Solar thermal system | | | 3 rd | Energy economics Present worth, Life cycle costing (LCC), Annual Life cycle costing(ALCC), Annual savings. calculations for Solar thermal system | | | 4 th | Energy economics Present worth, Life cycle costing (LCC), Annual Life cycle costing(ALCC), Annual savings. calculations for Solar thermal system | | | 5 th | CLASS TEST | | | 1 st | Energy economics Present worth, Life cycle costing (LCC), Annual Life cycle costing (ALCC), Annual savings. calculations for Solar thermal system | | | 2 nd | Solar PV system, | | 15 th | 3 rd | Wind system | | | 4 th | Biomass system | | | 5 th | CLASS TEST |