

NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha)

LESSON PLAN

SUBJECT: Th-3 (FLUID MECHANICS)

CHAPTER WISE DISTRIBUTION OF PERIODS

SI.No.	Name of the chapter as per the Syllabus		periods actually
1	Properties of Fluid	08	08
2	Fluid Pressure and its measurements	08	08
3	Hydrostatics	08	08
4	Kinematics of Flow	08	08
5	orifices, notches & weirs	08	08
6	Flow through pipe		10
7	Impact of jets		10
	TOTAL	60	60

Discipline: Mechanical ENGINEERING	Semester: 4TH	Name of the Teaching Faculty: Er. Ranjit Giri				
		SESSION : 2023-24 EXAMINATION : 2023(S)				
Week	Class Day	Topics to be Covered				
1 st	1 st	1.1 Define fluid				
	2 nd	1.2 Description of fluid properties like Density, Specific weight, specific gravity, specific volume and solve simple problems.				
	3 rd	1.2 Description of fluid properties like Density, Specific weight, specific gravity, specific volume and solve simple problems.				
	4 th	1.2 Description of fluid properties like Density, Specific weight, specific gravity, specific volume and solve simple problems.				
2 nd	1 st	1.3 Definitions and Units of Dynamic viscosity, kinematic viscosity, surface tension Capillary phenomenon				
	2 nd	1.3 Definitions and Units of Dynamic viscosity, kinematic viscosity, surface tension Capillary phenomenon				
	3 rd	1.3 Definitions and Units of Dynamic viscosity, kinematic viscosity, surface tension Capillary phenomenon				
	4 th	2.1 Definitions and units of fluid pressure, pressure intensity and pressure head.				
3 rd	1 st	2.1 Definitions and units of fluid pressure, pressure intensity and pressure head.				
	2 nd	2.2 Statement of Pascal's Law.				
3	3 rd	2.3 Concept of atmospheric pressure, gauge pressure, vacuum pressure and absolute pressure				
	4 th	2.3 Concept of atmospheric pressure, gauge pressure, vacuum pressure and absolute pressure				
	1 st	2.4 Pressure measuring instruments Manometers (Simple and Differential)				
4 th	2 nd	2.4.1 Bourdon tube pressure gauge(Simple Numerical)				
	3 rd	2.5 Solve simple problems on Manometer				
	4 th	2.5 Solve simple problems on Manometer				
5 th	1 st	3.1 Definition of hydrostatic pressure				
	2 nd	3.2 Total pressure and centre of pressure on immersed bodies(Horizontal and Vertical				
	3 rd	3.2 Total pressure and centre of pressure on immersed bodies(Horizontal and Vertical				
	4 th	3.3 Solve Simple problems.				

Week	Class Day	Topics to be Covered				
6 th	1 st	3.3 Solve Simple problems.				
	2 nd	3.4 Archimedes 'principle, concept of buoyancy, meta center and meta centric height (Definition only)				
	3 rd	3.5 Concept of floatation				
	4 th	INTERNAL ASSESMENT				
7 th	1 st	INTERNAL ASSESMENT				
	2 nd	4.1 Types of fluid flow				
	3 rd	4.2 Continuity equation(Statement and proof for one dimensional flow)				
	4 th	4.2 Continuity equation(Statement and proof for one dimensional flow)				
8 th	1 st	4.3 Bernoulli's theorem(Statement and proof) Applications and limitations of Bernoulli'stheorem (Venturimeter, pitot tube)				
	2 nd	4.3 Bernoulli's theorem(Statement and proof) Applications and limitations of Bernoulli's theorem (Venturimeter, pitot tube)				
	3 rd	4.4 Solve simple problems				
	4 th	4.4 Solve simple problems				
9 th	1 st	5.1 Define orifice				
	2 nd	5.2 Flow through orifice				
	3 rd	5.30rifices coefficient & the relation between the orifice coefficients				
	4 th	5.4 Classifications of notches & weirs				
	1 st	5.5 Discharge over a rectangular notch or weir				
10 th	2 nd	5.6 Discharge over a triangular notch or weir				
	3 rd	5.7 Simple problems on above				
	4 th	5.7 Simple problems on above				

Week	Class Day	Topics to be Covered			
11 th	1 st	6.1 Definition of pipe.			
	2 nd	5.2 Loss of energy in pipes.			
	3 rd	2 Loss of energy in pipes.			
	4 th	6.3 Head loss due to friction: Darcy's and Chezy's formula (Expression only)			
12 th	1 st	6.3 Head loss due to friction: Darcy's and Chezy's formula (Expression only)			
	2 nd	6.4 Solve Problems using Darcy's and Chezy's formula.			
	3 rd	6.4 Solve Problems using Darcy's and Chezy's formula.			
	4 th	6.4 Solve Problems using Darcy's and Chezy's formula.			
13 th	1 st	6.5 Hydraulic gradient and total gradient line			
	2 nd	6.5 Hydraulic gradient and total gradient line			
	3 rd	1 Impact of jet on fixed and moving vertical flat plates			
	4 th	1 Impact of jet on fixed and moving vertical flat plates			
	1 st	7.1 Impact of jet on fixed and moving vertical flat plates			
	2 nd	7.2 Derivation of work done on series of vanes and condition for maximum efficiency			
14 th	3 rd	7.2 Derivation of work done on series of vanes and condition for maximum efficiency			
	4 th	7.2 Derivation of work done on series of vanes and condition for maximum efficiency			
15 th	1 st	7.2 Derivation of work done on series of vanes and condition for maximum efficiency			
	2 nd	7.3 Impact of jet on moving curved vanes, illustration using velocity triangles, derivation of work done, efficiency.			
	3 rd	7.3 Impact of jet on moving curved vanes, illustration using velocity triangles, derivation of work done, efficiency.			
	4 th	7.3 Impact of jet on moving curved vanes, illustration using velocity triangles, derivation of work done, efficiency.			