

NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha)

LESSON PLAN

SUBJECT: Th-2 (STRENGTH OF MATERIAL)

Name Of The Faculty :- Er. Nihar Ranjan Sahoo

Branch: - Automobile Engineering

Semester:-3rd

Session: - 2024-25

Examination: 2024 (w)

CHAPTER WISE DISTRIBUTION OF PERIODS

Sl.No.	Name of the chapter as per the Syllabus	No. of Periods as per the Syllabus	No. of periods actually needed
1	Simple Stress & Strain	10	11
2	Thin cylindrical and spherical shell under internal pressure	8	9
3	Two dimensional stress systems	10	12
4	Bending moment& shear force	10	13
5	Theory of simple bending	10	11
6	Combined direct & Bending stresses	6	6
7	Torsion	6	6
	Total Period:	60	68

Sign of Faculty

Sign of H.O.D.

Discipline: AUTOMOBILE ENGINEERING	Semester: 3rd	Name of the Teaching Faculty: Er. Nihar Ranjan Sahoo		
		SESSION : 2024-25	EXAMINATION: 2024 (W)	
Week	Class Day	Topics to be Covered		
1 st	1 st .	Introduction to Strength of Materia	l.	
	2 nd	1.0 Simple stress& strain 1.1 Types of load, stresses & strains modulus, bulk modulus, modulus of	,(Axial and tangential) Hooke's law, Young's rigidity.	
	3 rd	Poisson's ratio, derive the relation b	petween three elastic constants,	
	4 th	1.2 Principle of super position, stres	ses in composite section	
	1 st ,	1.2 Principle of super position, stres	ses in composite section	
	2 nd	1.3 Temperature stress, determine core)	the temperature stress in composite bar (single	
2 nd	3 rd ,	1.3 Temperature stress, determine core)	the temperature stress in composite bar (single	
	4 th	1.4 Strain energy and resilience, Str impact load	ess due to gradually applied, suddenly applied and	
	1 st /	1.4 Strain energy and resilience, Str impact load	ess due to gradually applied, suddenly applied and	
3 rd	2 nd ,	1.4 Strain energy and resilience, Str impact load	ess due to gradually applied, suddenly applied and	
	3 rd	1.5 Simple problems on above.		
	4 th	1.5 Simple problems on above.		
	1 st	2.0 Thin cylinder and spherical she 2.1 Definition of hoop and longitud	•	
	2 nd	2.1 Definition of hoop and longitud	inal stress, strain	
4 th	3 rd	2.2 Derivation of hoop stress, longivolumetric strain	tudinal stress, hoop strain, longitudinal strain and	
	4 th	2.2 Derivation of hoop stress, longivolumetric strain	tudinal stress, hoop strain, longitudinal strain and	
5 th	1 st	2.2 Derivation of hoop stress, longi volumetric strain	tudinal stress, hoop strain, longitudinal strain and	
	2 nd	2.3 Computation of the change in l	ength, diameter and volume	
	3 rd	2.3 Computation of the change in l	ength, diameter and volume	
	4 th	2.4 Simple problems on above		
6 th	1 st	2.4 Simple problems on above		

Week	Class Day	Topics to be Covered	
6 th	2 nd	3.0 Two dimensional stress systems 3.1 Determination of normal stress, shear stress and resultant stress on oblique plane	
	3 rd	3.1 Determination of normal stress, shear stress and resultant stress on oblique plane	
	4 th	3.1 Determination of normal stress, shear stress and resultant stress on oblique plane	
7 th	1 st	3.1 Determination of normal stress, shear stress and resultant stress on oblique plane	
	2 nd	3.2 Location of principal plane and computation of principal stress	
	3 rd	3.2 Location of principal plane and computation of principal stress	
	4 th	3.2 Location of principal plane and computation of principal stress	
	1 st	3.3 Location of principal plane and computation of principal stress and Maximum shear stress using Mohr's circle	
	2 nd	3.3 Location of principal plane and computation of principal stress and Maximum shear stress using Mohr's circle	
8 th	3 rd	3.3 Location of principal plane and computation of principal stress and Maximum shear stress using Mohr's circle	
	4 th	3.3 Location of principal plane and computation of principal stress and Maximum shear stress using Mohr's circle	
	1 st	3.3 Location of principal plane and computation of principal stress and Maximum shear stress using Mohr's circle	
9 th	2 nd	4.0 Bending moment & shear force 4.1 Types of beam and load	
9	3 rd	4.2 Concepts of Shear force and bending moment	
	4 ^{Ln}	4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam	
10 th	1 st	4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam	
	2 nd	4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam	
	3 rd	4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam, simply supported beam	
	4 th	4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam, simply supported beam	
11 th	1 st	4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam, simply supported beam	
	2 nd	4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam, simply supported beam and over hanging beam under point load and uniformly distributed load	

Week	Class Day	Topics to be Covered	
44	3 rd	INTERNAL ASSESMENT	
11 th	4 th	INTERNAL ASSESMENT	
12 th	1 st	4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam, simply supported beam and over hanging beam under point load and uniformly distributed load	
	2 nd	4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam, simply supported beam and over hanging beam under point load and uniformly distributed load	
	3 rd	4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam, simply supported beam and over hanging beam under point load and uniformly distributed load	
	4 th	4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam, simply supported beam and over hanging beam under point load and uniformly distributed load	
	1 st	5.0 Theory of simple bending 5.1 Assumptions in the theory of bending,	
13 th	2 nd	5.2 Bending equation, Moment of resistance, Section modulus& neutral axis.	
	3 rd	5.2 Bending equation, Moment of resistance, Section modulus& neutral axis.	
	4 th	5.2 Bending equation, Moment of resistance, Section modulus& neutral axis.	
	1 st ,	5.2 Bending equation, Moment of resistance, Section modulus& neutral axis.	
14 th	2 nd	5.2 Bending equation, Moment of resistance, Section modulus& neutral axis.	
14	3 rd	5.3 Solve simple problems.	
	4 th	5.3 Solve simple problems.	
	1 st /	5.3 Solve simple problems.	
41-	2 nd	5.3 Solve simple problems.	
15 th	3 rd	5.3 Solve simple problems.	
	1 A 2	6.0 Combined direct & bending stresses 6.1 Define column	
	1 st .	6.2 Axial load, Eccentric load on column,	
16 th		6.3 Direct stresses, Bending stresses, Maximum& Minimum stresses. Numerical problems on above.	
	3 rd	6.3 Direct stresses, Bending stresses, Maximum& Minimum stresses. Numerical problems on above.	
	4 th	6.4 Buckling load computation using Euler's formula (no derivation) in Columns with various end conditions	
17 th		6.4 Buckling load computation using Euler's formula (no derivation) in Columns with various end conditions	

Week	Class Day	Topics to be Covered	
17 th	2 nd	7.0 Torsion	
	-	7.0 Assumption of pure torsion	
	3 rd	7.1 The torsion equation for solid and hollow circular shaft	
	4 th	7.1 The torsion equation for solid and hollow circular shaft	
18 th	1 st	7.1 The torsion equation for solid and hollow circular shaft	
	2 nd	7.2 Comparison between solid and hollow shaft subjected to pure torsion	
	3 rd	7.2 Comparison between solid and hollow shaft subjected to pure torsion	
	4 th	- Revision .	

Sign of Faculty

Sign of H.O.D.