

NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha)

LESSON PLAN

SUBJECT: TH-5 (AUTOMOBILE COMPONENT DESIGN)

Name of the Faculty-Er.Saroj Kumar Patra

Branch- Automobile Engineering

Session- 2024-25

Semester- 5th

Examination- 2024 (W)

CHAPTER WISE DISTRIBUTION OF PERIODS

Sl.No.	Name of the chapter as per the Syllabus	No. of Periods as per the Syllabus	No. of periods actually needed
1	BASIC CONCEPET OF DESIGN	12	12
2	DESIGN OF MACHINE ELEMENT	6	6
3	DESIGN OF SHAFT KEY & COMPONENT	10	11
4	DESIGN OF LEVERS	6	6
5	DESIGNOF CHASSIS	10	11
6	DESIGN OF ENGINE COMPONENT	16	16
	Total Period:	60	62

sign of the faculty

Sign of H.O.D

Discipline: AUTOMOBILE ENGINEERING	Semester:	Name of the Teaching Faculty: Er.Saroj Kumar Patra		
	5th	SESSION: 2024-25 EXAMINATION: 2024 (W)		
Week	Class Day	Topics to be Covered		
1 st	1 st	Basic concepts of design		
	2 nd	Introduction to design		
	3 rd	Introduction to design		
	4 th	Classification of design		
2 nd	1 st	Stress analysis		
	2 nd	Types of external loads		
	3 rd	Types of induced stresses: tensile, compressive, shear crushing & bearing		
	4 th	bending, torsion, thermal stresses, creep, proof stresses resilience principal stresses.		
3 rd	1 st	Stress- strain diagram for ductile & brittle material and its importance		
	2 nd	Variable stresses machine parts, fatigue & endurance limit, stress-time diagrams for variab stresses.		
	3 rd	Working stresses for static load, variable or fatigue load		
	4 th	Factor of safety, selection of factor of safety		
	1 st	Introduction to theories of failure-maximum principal theory. Maximum shear stress theory, Distribution energy theory		
4 th	2 nd	Selection of material and justifications of automobile components, advanced materials for automotive components		
	3 rd	.Concept of standardization, preferred numbers & inter chargeability in design practice.		
	4 th	Common types of fasteners with their applications-through bolts, tap bolts, top bolts, studies cap screws and machine screws		
5 th	1 st	Bearings – classification, location in automobiles systems & selection of bearings.		
	2 nd	Post design aspects ergonomic aspect aesthetic consideration (shape, colour, surface finish) for automobile.		
	3 rd	Post design aspects ergonomic aspect aesthetic consideration (shape, colour, surface finish) for automobile.		
	4 th	Post design aspects ergonomic aspect aesthetic consideration (shape, colour, surface finish) for automobile.		
6 th	1 st	Design of machine elements.		
	2 nd	Design of socket & spigot type cotter joint		
	3 rd	Design of socket & spigot type cotter joint		
	4 th	Design of socket & spigot type cotter joint		

Week C	Class Day	Topics to be Covered
	1 st	Design of knuckle joint
	2 nd	Design of turnbuckle
7 th	3 rd	Application of above machine elements in an automobile.
	4 th	Application of above machine elements in an automobile.
	1 st	Design of shafts, keys &couplings
	2 nd	Design of shaft for torsion, rigidity, bending, combined bending &torsion
8 th	3 rd	Design of shaft for torsion, rigidity, bending, combined bending &torsion
	4 th	Compression of solid & hollow shafts
3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 st	INTERNAL ASSESSMENT
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 nd	INTERNAL ASSESSMENT
9 th	3 rd	Types of keys design of sunk rectangular key, woodruff key. Effect of keyways on shaf
	4 th	Design of coupling-muff, flange and bush pin type flexible
Period at	1 st	Design of coupling-muff, flange and bush pin type flexible
	2 nd	Design of coupling-muff, flange and bush pin type flexible
10 th	3 rd	Design of levers.
	4 th	Types of levers
	1 st	Rocker arm
	2 nd	Hand lever
11 th	3 rd	Pedals for rectangular cross-section& fulcrum Pinonly
	4 th	Pedals for rectangular cross-section& fulcrum Pinonly
	1 st	Design of chassis component
	2 nd	Design of cloth- single plate & multi plate
12 th	3 rd	Teeth calculation of gears for sliding mesh/constant mesh gear box of given data.
	4 th	Design of semi elliptical leaf spring, helical spring-torsion &compression
13 th	1 st	Design of semi elliptical leaf spring, helical spring-torsion &compression

Week	Class Day	Topics to be Covered	
13 th	2 nd	Design of engine components	3
	3 _{rd}	Data of engine specifications & calculation of cylinder dimensions for given	
	4 th	Design of cylinder head thickness &bolts	
14 th	1 st	Design of valve seat & valve lift	
	2 nd	Design of piston crown by bending strength & thermal considerations	
	3 rd	Design of piston crown by bending strength & thermal considerations	
	4 th	Design of piston rings & skirt length	
15 th	1 st	bending & shear considerations.	
	2 nd	Design of connecting rod cross-section(I-section)	
	3 rd	Design of big end, cap &bolt.	
	4 th	Design of big end, cap &bolt.	
16 th	1 st	Design of over hung crankshaft.	
	2 nd	Design of over hung crankshaft.	
	3 rd	Design of over hung crankshaft.	
	4 th	Revision	

sign of the faculty

Sign of H.O.D