

NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha)

LESSON PLAN

SUBJECT: Th-2 (APPLIED PHYSICS-I)

NAME OF THE FACULTY: MISS BASUMATI BEHERA

MR. SAUMYARANJAN PANDA

BRANCH:- AE/CE/ME/EE/EEE

SEMESTER:- 1st

SESSION: - 2024-25

EXAMINATION:- 2024 (W)

CHAPTER WISE DISTRIBUTION OF PERIODS

serial no.	Name of the unit	Distribution of period per unit needed	
1	Physical world, Units and Measurements	10	
2	Force and Motion	11	
3	Work, Power and Energy	10	
4	Rotational Motion	10	
5	Properties of Matter	14	
6	Heat and Thermometry	11	
	Total	66	

Sign of Faculty

Sign of H.O.D.

Discipline: AE/CE/ME/ EE/EEE	Semester:	NAME OF THE TEACHING FACULTY: MISS BASUMATI BEHERA MR. SAUMYARANJAN PANDA	
		SESSION : 2024-25 EXAMINATION : 2024 (W)	
Week	Class Day	Topics to be Covered	
1 st	1 st	Unit 1: Physical world, Units and Measurements Physical quantities; fundamental and derived, Units and systems of units (FPS, CGS and SI units)	
	2 nd	Dimensions and dimensional formulae of physical quantities, Principle of homogeneity of dimensions,	
	3 rd	Dimensional equations and their applications (conversion from one system of units to other,	
	4 th	Checking of dimensional equations and derivation of simple equations),	
	1 st	Limitations of dimensional analysis.	
	2 nd	Measurements: Need, measuring instruments, least count,	
2 nd	3 rd	types of measurement (direct, indirect),	
	4 th	Errors in measurements (systematic and random),	
ti u	1 st	absolute error, relative error, error propagation	
	2 nd	error estimation and significant figures.	
3 rd	3 rd	<u>Unit 2:</u> Force and Motion Scalar and Vector quantities – examples, representation of vector, Types of vectors.	
	4 th	Addition and Subtraction of Vectors, Triangle and Parallelogram law (Statement only)	
	1 st	Resolution of a Vector and its application to inclined plane and lawn roller, Scalar and Vector Product.	
4 th	2 nd	Force, Momentum, Statement	
4***	3 rd	derivation of conservation of linear momentum	
	4 th	its applications such as recoil of gun, rockets Impulse and its applications	
	1 st	Circular motion, definition of angular displacement, angular velocity, angular acceleration,	
5 th	2 nd	Frequency, time period, Relation between linear and angular velocity linear acceleration. and angular acceleration (related numerical),	
3	3 rd	Relation between linear acceleration. Angular acceleration (related numerical)	
	4 th	Centripetal and Centrifugal forces with live examples.	
	1 st	Expression and applications such as banking of roads and bending of cyclist	
6 th	2 nd	Unit 3: Work, Power and Energy Work: Concept and units, examples of zero work,	
	3 rd	positive work and negative work .	

W	/eek	Class Day	Topics to be Covered
		4 th	Friction: concept, types, laws of limiting friction, coefficient of friction,
		1 st	claws of limiting friction, coefficient of friction coefficient of friction,
	al.	2 nd	work relationship Calculation of power (numerical problems)
	7 th	3 rd	Reducing friction and its engineering applications
	T	4 th	Work done in moving an object on horizontal and inclined plane for rough and plane surfaces and related applications
		1 st	Energy and its units, kinetic energy, gravitational potential energy with examples and derivations,.
o th	8 th	2 nd	Mechanical energy, conservation of mechanical energy for freely falling bodies transformation of energy (examples).
		3 rd	Power and its units, power and work relationship, Calculation of power (numerical problems)
	ri.	4 th	1st Inernal assessment
		1 st	Unit 4: Rotational Motion Translational motions with examples
	9 th	2 nd	Rotational motion with example
9		3 rd	Definition of torque and angular momentum and their examples
		4 th	Conservation of angular momentum (quantitative) and its applications.
		1 st	Moment of inertia and its physical significance
	7	2 nd	radius of gyration for rigid body
1	O th	3 rd	Theorems of parallel and perpendicular axes (statements only)
			Relation between torque and momen of inertia , between angular momentum and moment of inertia
	_	1 st	Moment of inertia of rod, disc
1	1 th	2 nd	Moment of inertia of ring and sphere (hollow and solid); (Formulae only).
		J	Unit 5: Properties of Matter Elasticity: Definition of stress and strain, moduli of elasticity
		4 th	Hooke's law, significance of stress-strain curve
		1 st	Pressure: definition, units, atmospheric pressure, Gauge pressure, absolute pressure,
11	2 th	2 nd	Fortin's Barometer and its applications
		3 rd	Surface tension: concept, units
		4 th	Cohesive and adhesive forces, angle of contact,

Week	Class Day	Topics to be Covered
	1 st	Ascent Formula (No derivation), applications of surface tension Effect of temperature and impurity on surface tension
13 th	2 nd	Viscosity and coefficient of viscosity:
	3 rd	Terminal velocity, Stoke's law and effect of temperature on viscosity
	4 th	Application in hydraulic systems
	1 st	Hydrodynamics: Fluid motion, stream line and turbulent flow
4 h	2 nd	Reynolds's number Equation of continuity
14 th	3 rd	Bernoulli's Theorem (only formula and numerical) and its applications.
	4 th	applications. And problems
	1 st	Unit 6: Heat and Thermometry Concept of heat and temperature, modes of heat transfer (conduction, convection
a la	2 nd	Specific heats, scales of temperature and their relationship
15 th	3 rd	Types of Thermometer (Mercury thermometer, Bimetallic thermometer
	4 th	Platinum resistance thermometer, Pyrometer) and their uses.
	1 st	2nd internal assesment
ä	2 nd	(Mercury thermometer, Bimetallic thermometer
16 th	3 rd	Expansion of solids, liquids and gases,
	4 th	Coefficient of linear, surface and cubical expansions
	1 st	Relation amongst coefficient of linear,
17 th	2 nd	surface and cubical expansions
	3 rd	Co-efficient of thermal conductivity, Engineering applications
	4 th	Engineering applications

Sign of Faculty

Sign of Hoo.D.