

## NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha)



## **LESSON PLAN**

SUBJECT: Th-2 (APPLIED PHYSICS - II)

NAME OF THE FACULTY: MISS BASUMATI BEHERA

MR. SAUMYARANJAN PANDA

**BRANCH:** - AE/CE/ME/EE/EEE

**SEMESTER:-** 2nd

**SESSION: -** 2024-25

EXAMINATION: - 2025 (S)

## **CHAPTER WISE DISTRIBUTION OF PERIODS**

| serial no. | Name of the unit                 | Distribution of period per unit needed |
|------------|----------------------------------|----------------------------------------|
| 1          | Wave motion and its applications | 12                                     |
| 2          | Optics .                         | 8                                      |
| 3          | Electrostatics                   | 10                                     |
| 4          | Current Electricity              | 8                                      |
| 5          | Electromagnetism                 | 7                                      |
| 6          | Semiconductor Physics            | 7                                      |
| 7          | Modern Physics                   | 10                                     |
|            | Total                            | 62                                     |

Sign of Faculty

Sign of H.O.D.

| Discipline<br>AE/CE/ME<br>/EE/EEE | Semester        | NAME OF THE TEACHING FACULTY: MISS BASUMATI BEHERA  MR. SAUMYARANJAN PANDA                              |  |
|-----------------------------------|-----------------|---------------------------------------------------------------------------------------------------------|--|
|                                   |                 | <b>SESSION</b> : 2024-25 <b>EXAMINATION</b> : 2025 (S)                                                  |  |
| Week                              | Class Day       | Topics to be Covered                                                                                    |  |
| 1 <sup>st</sup>                   | 1 <sup>st</sup> | UNIT - 1: Wave motion and its applications Wave motion, transverse and longitudinal waves with examples |  |
|                                   | 2 <sup>nd</sup> | Definitions of wave velocity, frequency and wave length and their relationship                          |  |
|                                   | 3 <sup>rd</sup> | Sound and light waves and their properties, wave equation (y = $r \sin \omega t$ )                      |  |
|                                   | 4 <sup>th</sup> | Amplitude, phase, phase difference, principle of superposition of waves and beat formation.             |  |
| 8.                                | 1 <sup>st</sup> | Simple Harmonic Motion (SHM): definition, expression for displacement, velocity, acceleration           |  |
| 2 <sup>nd</sup>                   | 2 <sup>nd</sup> | time period, frequency etc. Simple harmonic progressive wave and energy transfer,                       |  |
|                                   | 3 <sup>rd</sup> | study of vibration of cantilever and determination of its time period,                                  |  |
|                                   | 4 <sup>th</sup> | Free, forced and resonant vibrations with examples.                                                     |  |
|                                   | 1 <sup>st</sup> | Acoustics of buildings – reverberation, reverberation time, echo,                                       |  |
| 3 <sup>rd</sup>                   | 2 <sup>nd</sup> | noise, coefficient of absorption of sound                                                               |  |
| 3                                 | 3 <sup>rd</sup> | methods to control reverberation time and their applications,                                           |  |
|                                   | 4 <sup>th</sup> | Ultrasonic waves – Introduction and properties, engineering and medical applications of ultrasonic.     |  |
| L.                                | 1 <sup>st</sup> | UNIT - 2: Optics: Basic optical laws; reflection and refraction                                         |  |
| 4 <sup>th</sup>                   | 2 <sup>nd</sup> | Refractive index, Images and image formation by mirrors, lens and thin lenses                           |  |
| 4                                 | 3 <sup>rd</sup> | Lens formula, power of lens, magnification and defects                                                  |  |
|                                   | 4 <sup>th</sup> | Total internal reflection, Critical angle and conditions for total internal reflection,                 |  |
|                                   | 1 <sup>st</sup> | Applications of total internal reflection in optical fiber                                              |  |
| <b>5</b> <sup>th</sup>            | 2 <sup>nd</sup> | Optical Instruments; simple and compound microscope                                                     |  |
|                                   | 3 <sup>rd</sup> | Astronomical telescope in normal adjustment, magnifying power,                                          |  |
|                                   | 4 <sup>th</sup> | Resolving power, uses of microscope and telescope, optical projection systems.                          |  |
|                                   | 1 <sup>st</sup> | UNIT - 3: Electrostatics: Coulombs law, unit of charge, Electric field                                  |  |
| 6 <sup>th</sup>                   | 2 <sup>nd</sup> | Electric lines of force and their properties, Electric flux,                                            |  |
|                                   | 3 <sup>rd</sup> | Electric potential and potential difference, Gauss law:                                                 |  |

| Week                    | Class Day              | Topics to be Covered                                                                                                                 |
|-------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|                         | 4 <sup>th</sup>        | Application of Gauss law to find electric field intensity of straight charged conductor, plane charged sheet                         |
| <b>7</b> <sup>th</sup>  | 1 <sup>st</sup>        | 1st internal assessment                                                                                                              |
|                         | 2 <sup>nd</sup>        | Application of Gauss law to find electric field intensity of plane charged sheet and                                                 |
|                         | 3 <sup>rd</sup>        | Capacitor and its working, Types of capacitors                                                                                       |
|                         | 4 <sup>th</sup>        | Capacitance and its units. Capacitance of a parallel plate capacitor,                                                                |
|                         | 1 <sup>st</sup>        | Series and parallel combination of capacitors (related numerical),                                                                   |
| 8 <sup>th</sup>         | 2 <sup>nd</sup>        | dielectric and its effect on capacitance, dielectric break down.                                                                     |
|                         | 3 <sup>rd</sup>        | UNIT - 4: Current Electricity  Electric Current and its units, Direct and alternating current                                        |
|                         | 4 <sup>th</sup>        | Resistance and its units, Specific resistance, Conductance, Specific conductance,                                                    |
|                         | 1 <sup>st</sup>        | Series and parallel combination of resistances.                                                                                      |
| 9 <sup>th</sup>         | 2 <sup>nd</sup>        | Factors affecting resistance of a wire, carbon resistances and colour coding                                                         |
| 9                       | 3 <sup>rd</sup>        | Ohm's law and its verification, Kirchhoff's laws                                                                                     |
|                         | 4 <sup>th</sup>        | Wheatstone bridge and its applications (slide wire bridge only)                                                                      |
| 1                       | 1 <sup>st</sup>        | Concept of terminal potential difference and Electromotive force (EMF) ,Heating effect of current                                    |
| 10 <sup>th</sup>        |                        | Electric power, Electric energy and its units (related numerical problems) Advantages of Electric Energy over other forms of energy. |
| <b>10</b> <sup>th</sup> | 3                      | UNIT - 5: Electromagnetism  Types of magnetic materials; dia, para and ferromagnetic with their properties                           |
|                         |                        | Magnetic field and its units, magnetic intensity, magnetic lines of force,                                                           |
|                         | 1 <sup>st</sup>        | magnetic flux and units, magnetization.                                                                                              |
| 11 <sup>th</sup>        |                        | Concept of electromagnetic induction, Faraday's Laws, Lorentz force (force on moving charge in magnetic field).                      |
|                         |                        | Force on current carrying conductor, force on rectangular coil placed in magnetic field                                              |
| 1 2                     | 4 <sup>th</sup>        | Moving coil galvanometer; principle, construction and working,                                                                       |
|                         | <b>1</b> <sup>st</sup> | Conversion of a galvanometer into ammeter and voltmeter.                                                                             |
| 12 <sup>th</sup>        |                        | JNIT - 6: Semiconductor Physics Energy bands in solids, Types of materials (insulator, semi-conductor, conductor)                    |
|                         |                        | ntrinsic and extrinsic semiconductors, p-n junction,                                                                                 |

| Week                    | Class Day         | Topics to be Covered                                                                                       |
|-------------------------|-------------------|------------------------------------------------------------------------------------------------------------|
|                         | 4 <sup>th</sup>   | junction diode and V-I characteristics, types of junction diodes                                           |
| <b>13</b> <sup>th</sup> | 1 <sup>st</sup>   | 2nd internal assessment                                                                                    |
|                         | 2 <sup>nd</sup>   | Diode as rectifier – half wave and full wave rectifier (centre taped).                                     |
|                         | 3 <sup>rd</sup>   | Transistor; description and three terminals, Types- pnp and npn, some electronic applications (list only). |
|                         | 4 <sup>th</sup>   | Photocells, Solar cells; working principle and engineering applications.                                   |
| <b>14</b> <sup>th</sup> | 1 <sup>st</sup>   | UNIT - 7: Modern Physics Lasers: Energy levels, ionization and excitation potentials                       |
|                         | 2 <sup>nd</sup>   | spontaneous and stimulated emission; population inversion, pumping methods optical feedback                |
|                         | 3 <sup>rd</sup>   | Types of lasers; Ruby, He Ne and semiconductor laser                                                       |
|                         |                   | characteristics, engineering and medical applications of lasers                                            |
| <b>15</b> <sup>th</sup> |                   | Fiber Optics: Introduction to optical fibers,                                                              |
|                         | 2 <sup>nd</sup>   | Light propagation, acceptance angle and numerical aperture                                                 |
|                         |                   | Fiber types, applications in; telecommunication, medical and sensors.                                      |
|                         | 4 <sup>th</sup>   | Nanoscience and Nanotechnology: Introduction,                                                              |
| 6th -                   | 1 <sup>st</sup> r | anoparticles and nanomaterials, properties at nanoscale                                                    |
|                         | 2 <sup>nd</sup> n | anotechnology, nanotechnology based devices and applications.                                              |

Sign of Faculty

Sign of HIO.D.