NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha) ## **LESSON PLAN** SUBJECT: Th-2 (APPLIED PHYSICS - II) NAME OF THE FACULTY: MISS BASUMATI BEHERA MR. SAUMYARANJAN PANDA **BRANCH:** - AE/CE/ME/EE/EEE **SEMESTER:-** 2nd **SESSION: -** 2024-25 EXAMINATION: - 2025 (S) ## **CHAPTER WISE DISTRIBUTION OF PERIODS** | serial no. | Name of the unit | Distribution of period per unit needed | |------------|----------------------------------|--| | 1 | Wave motion and its applications | 12 | | 2 | Optics . | 8 | | 3 | Electrostatics | 10 | | 4 | Current Electricity | 8 | | 5 | Electromagnetism | 7 | | 6 | Semiconductor Physics | 7 | | 7 | Modern Physics | 10 | | | Total | 62 | Sign of Faculty Sign of H.O.D. | Discipline
AE/CE/ME
/EE/EEE | Semester | NAME OF THE TEACHING FACULTY: MISS BASUMATI BEHERA MR. SAUMYARANJAN PANDA | | |-----------------------------------|-----------------|---|--| | | | SESSION : 2024-25 EXAMINATION : 2025 (S) | | | Week | Class Day | Topics to be Covered | | | 1 st | 1 st | UNIT - 1: Wave motion and its applications Wave motion, transverse and longitudinal waves with examples | | | | 2 nd | Definitions of wave velocity, frequency and wave length and their relationship | | | | 3 rd | Sound and light waves and their properties, wave equation (y = $r \sin \omega t$) | | | | 4 th | Amplitude, phase, phase difference, principle of superposition of waves and beat formation. | | | 8. | 1 st | Simple Harmonic Motion (SHM): definition, expression for displacement, velocity, acceleration | | | 2 nd | 2 nd | time period, frequency etc. Simple harmonic progressive wave and energy transfer, | | | | 3 rd | study of vibration of cantilever and determination of its time period, | | | | 4 th | Free, forced and resonant vibrations with examples. | | | | 1 st | Acoustics of buildings – reverberation, reverberation time, echo, | | | 3 rd | 2 nd | noise, coefficient of absorption of sound | | | 3 | 3 rd | methods to control reverberation time and their applications, | | | | 4 th | Ultrasonic waves – Introduction and properties, engineering and medical applications of ultrasonic. | | | L. | 1 st | UNIT - 2: Optics: Basic optical laws; reflection and refraction | | | 4 th | 2 nd | Refractive index, Images and image formation by mirrors, lens and thin lenses | | | 4 | 3 rd | Lens formula, power of lens, magnification and defects | | | | 4 th | Total internal reflection, Critical angle and conditions for total internal reflection, | | | | 1 st | Applications of total internal reflection in optical fiber | | | 5 th | 2 nd | Optical Instruments; simple and compound microscope | | | | 3 rd | Astronomical telescope in normal adjustment, magnifying power, | | | | 4 th | Resolving power, uses of microscope and telescope, optical projection systems. | | | | 1 st | UNIT - 3: Electrostatics: Coulombs law, unit of charge, Electric field | | | 6 th | 2 nd | Electric lines of force and their properties, Electric flux, | | | | 3 rd | Electric potential and potential difference, Gauss law: | | | Week | Class Day | Topics to be Covered | |-------------------------|------------------------|--| | | 4 th | Application of Gauss law to find electric field intensity of straight charged conductor, plane charged sheet | | 7 th | 1 st | 1st internal assessment | | | 2 nd | Application of Gauss law to find electric field intensity of plane charged sheet and | | | 3 rd | Capacitor and its working, Types of capacitors | | | 4 th | Capacitance and its units. Capacitance of a parallel plate capacitor, | | | 1 st | Series and parallel combination of capacitors (related numerical), | | 8 th | 2 nd | dielectric and its effect on capacitance, dielectric break down. | | | 3 rd | UNIT - 4: Current Electricity Electric Current and its units, Direct and alternating current | | | 4 th | Resistance and its units, Specific resistance, Conductance, Specific conductance, | | | 1 st | Series and parallel combination of resistances. | | 9 th | 2 nd | Factors affecting resistance of a wire, carbon resistances and colour coding | | 9 | 3 rd | Ohm's law and its verification, Kirchhoff's laws | | | 4 th | Wheatstone bridge and its applications (slide wire bridge only) | | 1 | 1 st | Concept of terminal potential difference and Electromotive force (EMF) ,Heating effect of current | | 10 th | | Electric power, Electric energy and its units (related numerical problems) Advantages of Electric Energy over other forms of energy. | | 10 th | 3 | UNIT - 5: Electromagnetism Types of magnetic materials; dia, para and ferromagnetic with their properties | | | | Magnetic field and its units, magnetic intensity, magnetic lines of force, | | | 1 st | magnetic flux and units, magnetization. | | 11 th | | Concept of electromagnetic induction, Faraday's Laws, Lorentz force (force on moving charge in magnetic field). | | | | Force on current carrying conductor, force on rectangular coil placed in magnetic field | | 1 2 | 4 th | Moving coil galvanometer; principle, construction and working, | | | 1 st | Conversion of a galvanometer into ammeter and voltmeter. | | 12 th | | JNIT - 6: Semiconductor Physics Energy bands in solids, Types of materials (insulator, semi-conductor, conductor) | | | | ntrinsic and extrinsic semiconductors, p-n junction, | | Week | Class Day | Topics to be Covered | |-------------------------|-------------------|--| | | 4 th | junction diode and V-I characteristics, types of junction diodes | | 13 th | 1 st | 2nd internal assessment | | | 2 nd | Diode as rectifier – half wave and full wave rectifier (centre taped). | | | 3 rd | Transistor; description and three terminals, Types- pnp and npn, some electronic applications (list only). | | | 4 th | Photocells, Solar cells; working principle and engineering applications. | | 14 th | 1 st | UNIT - 7: Modern Physics Lasers: Energy levels, ionization and excitation potentials | | | 2 nd | spontaneous and stimulated emission; population inversion, pumping methods optical feedback | | | 3 rd | Types of lasers; Ruby, He Ne and semiconductor laser | | | | characteristics, engineering and medical applications of lasers | | 15 th | | Fiber Optics: Introduction to optical fibers, | | | 2 nd | Light propagation, acceptance angle and numerical aperture | | | | Fiber types, applications in; telecommunication, medical and sensors. | | | 4 th | Nanoscience and Nanotechnology: Introduction, | | 6th - | 1 st r | anoparticles and nanomaterials, properties at nanoscale | | | 2 nd n | anotechnology, nanotechnology based devices and applications. | Sign of Faculty Sign of HIO.D.