

NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha)

LESSON PLAN

SUBJECT: ENGINEERING MECHANICS(TH-4)

Name Of The Faculty :- Er. ABHILIPSA DAS

Branch :- AE/CE/ME

Session: - 2024-25

Semester: 2nd

Examination: - 2025(S)

CHAPTER WISE DISTRIBUTION OF PERIODS

Sl.No.	Name of the chapter as per the Syllabus	No. of periods actually needed
1	Unit – I Basics of mechanics and force system	14
2	Unit– II Equilibrium	13
3	Unit– III Friction	9
4	Unit– IV Centroid and centre of gravity	11
5	Unit – V Simple lifting machine	9
	Total Period:	60

Sign of Faculty

Sign of H.O.D.

Discipline:AE/ CE/ME	Semester: 2nd	Name of the Teaching Faculty: Er. ABHILIPSA DAS	
		SESSION : 2024-25 EXAMINATION : 2025 (S)	
Week	Class Day	Topics to be Covered	
1 st	1 st	Basics of mechanics and force system Significance and relevance of Mechanics, Applied mechanics, Statics, Dynamics.	
	2 nd	Space, time, mass, particle, flexible body and rigid body.	
	3 rd	Scalar and vector quantity, Units of measurement (SI units) - Fundamental units and derived units	
	4 th	Scalar and vector quantity, Units of measurement (SI units) - Fundamental units and derived units	
2 nd	1 st	Force – unit, representation as a vector and by Bow's notation,	
	2 nd	characteristics and effects of a force, Principle of transmissibility of force,	
	3 rd	Force system and its classification.	
	4 th	Resolution of a force - Orthogonal components of a force	
	1 st	moment of a force, Varignon's Theorem.	
3 rd	2 nd	Composition of forces – Resultant, analytical method for determination of resultant fo concur- rent, non-concurrent and parallel co-planar force systems –	
	3 rd	Composition of forces – Resultant, analytical method for determination of resultant fo concur- rent, non-concurrent and parallel co-planar force systems –	
	4 th	Law of triangle, parallelogram and polygon of forces.	
	1 st	Law of triangle, parallelogram and polygon of forces.	
4 th	2 nd	Law of triangle, parallelogram and polygon of forces.	
	3 rd	Equilibrium Equilibrium and Equilibrant, Free body and Free body diagram	
	4 th	Analytical and graphical meth- ods of analysing equilibrium	
5 th	1 st	Lami's Theorem – statement and explanation, Application for various engineering problems.	
	2 nd	Lami's Theorem – statement and explanation, Application for various engineering problems.	
	3 rd	Types of beam, supports (simple, hinged, roller and fixed) and loads acting on beam (vertical and inclined point load, uniformly distributed load, couple)	
	4 th	Types of beam, supports (simple, hinged, roller and fixed) and loads acting on beam (vertical and inclined point load, uniformly distributed load, couple)	
6 th	1 st	Types of beam, supports (simple, hinged, roller and fixed) and loads acting on beam (vertical and inclined point load, uniformly distributed load, couple)	

Week	Class Day	Topics to be Covered	
6 th	2 nd	Beam reaction for cantilever, simply supported beam with or without overhang – subjected to combination of Point load and uniformly distributed load.	
	3 rd	Beam reaction for cantilever, simply supported beam with or without overhang – subjected to combination of Point load and uniformly distributed load.	
	4 th	Beam reaction for cantilever, simply supported beam with or without overhang – subjected to combination of Point load and uniformly distributed load.	
7 th	1 st	Beam reaction graphically for simply supported beam subjected to vertical point loads only.	
	2 nd	Beam reaction graphically for simply supported beam subjected to vertical point loads only.	
	3 rd	FIRST INTERNAL ASSESSMENT	
	4 th	FIRST INTERNAL ASSESSMENT	
8 th	1 st	Friction Friction and its relevance in engineering, co-efficient of friction,	
	2 nd	Types and laws of friction, limiting equilibrium, limiting friction	
	3 rd	Types and laws of friction, limiting equilibrium, limiting friction	
	4 th	co-efficient of friction, angle of friction,	
	1 st	Angle of repose, relation between co-efficient of friction and angle of friction.	
9 th	2 nd	Equilibrium of bodies on level surface subjected to force parallel and inclined to plane	
	3 rd	Equilibrium of bodies on level surface subjected to force parallel and inclined to plane	
	4 th	Equilibrium of bodies on inclined plane subjected to force parallel to the plane only.	
10 th	1 st	Equilibrium of bodies on inclined plane subjected to force parallel to the plane only.	
	2 nd	Equilibrium of bodies on inclined plane subjected to force parallel to the plane only.	
	3 rd	Centroid and centre of gravity Centroid of geometrical plane figures (square, rectangle, triangle, circle, semi-circle, quarter circle)	
	4 th	Centroid and centre of gravity Centroid of geometrical plane figures (square, rectangle, triangle, circle, semi-circle, quarter circle)	
11 th	1 st	Centroid of composite figures composed of not more than three geometrical figures.	
	2 nd	Centroid of composite figures composed of not more than three geometrical figures.	
	3 rd	Centroid of composite figures composed of not more than three geometrical figures.	

Week	Class Day	Topics to be Covered	
11 th	4 th	Centre of Gravity of simple solids (Cube, cuboid, cone, cylinder, sphere, hemisphere) Centre of Gravity of composite solids composed of not more than two simple solids	
12 th	1 st	Centre of Gravity of simple solids (Cube, cuboid, cone, cylinder, sphere, hemisphere) Centre of Gravity of composite solids composed of not more than two simple solids	
	2 nd	Centre of Gravity of simple solids (Cube, cuboid, cone, cylinder, sphere, hemisphere) Centre of Gravity of composite solids composed of not more than two simple solids	
	3 rd	Centre of Gravity of simple solids (Cube, cuboid, cone, cylinder, sphere, hemisphere) Centre of Gravity of composite solids composed of not more than two simple solids	
	4 th	NUMERICALS SOLVED.	
13 th	1 st	NUMERICALS SOLVED.	
	2 nd	SECOND INTERNAL ASSESSMENT	
	3 rd	SECOND INTERNAL ASSESSMENT	
	4 th	Simple lifting machine Simple lifting machine, load, effort	
14 th	1 st	Mechanical advantage, applications and advantages.	
	2 nd	Velocity ratio, efficiency of machines, law of machine.	
	3 rd	Velocity ratio, efficiency of machines, law of machine.	
	4 th	Ideal machine, friction in machine, maximum Mechanical advantage and efficiency, reversible and non-reversible machines, conditions for reversibility	
15 th	1 st	Ideal machine, friction in machine, maximum Mechanical advantage and efficiency, reversible and non-reversible machines, conditions for reversibility	
	2 nd	Velocity ratios of Simple axle and wheel, Differential axle and wheel, Worm and worn wheel, Single purchase and double purchase crab winch.	
	3 rd	Simple screw jack, Weston's differential pulley block, geared pulley block.	
	4 th	Simple screw jack, Weston's differential pulley block, geared pulley block.	

Sign of Faculty

Sign of H₂O.D.