

NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha)

LESSON PLAN

SUBJECT: Th-1 (STRUCTURAL MECHANICS)

Name Of The Faculty :- Er. Kumar Swatiranjan

Branch :- Civil Engineering

Session :- 2024-25

Semester:-3rd

Examination :- 2024 (w)

CHAPTER WISE DISTRIBUTION OF PERIODS

Sl.No.	Name of the chapter as per the Syllabus	No. of Periods as per the Syllabus	No. of periods actually needed
1	Review of Basic Concepts	4	5
2	Simple and Complex Stress, Strain	15	17
3	Stresses in Beams	10	12
4	Columns and Struts	4	4
5	Shear Force and Bending Moment	12	14
6	Slope and Deflection	10	12
7	Indeterminate Beams	10	12
8	Trusses and Frames	10	10
	Total Period:	75	86

Sign of Faculty

Sign of H.O.D.

Discipline: CIVIL ENGINEERING	Semester: 3rd	Name of the Teaching Faculty: Er. Kumar Swatiranjan	
		SESSION : 2024-25 EXAMINATION : 2024 (W)	
Week	Class Day	Topics to be Covered	
1 st	1 st	Review Of Basic Concepts 1.1 Basic Principle of Mechanics: Force, Moment, support conditions, Conditions of equilibrium, C.G & MI, Free body diagram	
	2 nd	1.1 Basic Principle of Mechanics: Force, Moment, support conditions, Conditions of equilibrium, C.G & MI, Free body diagram	
	3 rd	1.2 Review of CG and MI of different sections	
	4 th	1.2 Review of CG and MI of different sections	
	5 th	1.2 Review of CG and MI of different sections	
2 nd	1 st	2. Simple And Complex Stress, Strain 2.1 Simple Stresses and Strains Introduction to stresses and strains: Mechanical properties of materials – Rigidity, Elasticity, Plasticity, Compressibility, Hardness, Toughness, Stiffness, Brittleness, Ductility, Malleability, Creep, Fatigue, Tenacity, Durability	
	2 nd	2.1 Simple Stresses and Strains Types of stresses -Tensile, Compressive and Shear stresses	
	3 rd	2.1 Simple Stresses and Strains Types of strains - Elongation and Contraction, Longitudinal and Lateral strains, Poisson's Ratio, Volumetric strain, computation of stress, strain, Poisson's ratio, change in dimensions and volume etc	
	4 th	2.1 Simple Stresses and Strains Hooke's law - Elastic Constants, Derivation of relationship between the elastic constants	
	5 th	2.1 Simple Stresses and Strains Hooke's law - Elastic Constants, Derivation of relationship between the elastic constants	
3 rd	1 st	2.2 Application of simple stress and strain in engineering field Behaviour of ductile and brittle materials under direct loads, Stress Strain curve of a ductile material	
	2 nd	2.2 Application of simple stress and strain in engineering field Limit of proportionality, Elastic limit, Yield stress, Ultimate stress, Breaking stress	
	3 rd	2.2 Application of simple stress and strain in engineering field Percentage elongation, Percentage reduction in area, Significance of percentage elongation and reduction in area of cross section	
	4 th	2.2 Application of simple stress and strain in engineering field Deformation of prismatic bars due to uniaxial load	
	5 th	2.2 Application of simple stress and strain in engineering field Deformation of prismatic bars due to its self weight	

4 th	1 st	2.2 Application of simple stress and strain in engineering field Deformation of prismatic bars due to its self weight
	2 nd	2.2 Application of simple stress and strain in engineering field Deformation of prismatic bars due to its self weight
	3 rd	2.3 Complex stress and strain Major and minor principal stresses and their orientations
	4 th	2.3 Complex stress and strain Major and minor principal stresses and their orientations
	5 th	2.3 Complex stress and strain Mohr's Circle and its application to solve problems of complex stresses
	1 st	2.3 Complex stress and strain Mohr's Circle and its application to solve problems of complex stresses
	2 nd	2.3 Complex stress and strain Mohr's Circle and its application to solve problems of complex stresses
5 th	3 rd	3. Stresses In Beams and Shafts 3.1 Stresses in beams due to bending Bending stress in beams – Theory of simple bending – Assumptions – Moment of resistance – Equation for Flexure– Flexural stress distribution
	4 th	3.1 Stresses in beams due to bending Curvature of beam – Position of N.A. and Centroidal Axis – Flexural rigidity – Significance of Section modulus.
	5 th	3.2 Shear stresses in beams Shear stress distribution in beams of rectangular, circular and standard sections symmetrical about vertical axis.
6 th	1 st	3.2 Shear stresses in beams Shear stress distribution in beams of rectangular, circular and standard sections symmetrical about vertical axis
	2 nd	3.3 Stresses in shafts due to torsion Concept of torsion, basic assumptions of pure torsion, torsion of solid and hollow circular sections, polar moment of inertia,
	3 rd	3.3 Stresses in shafts due to torsion Torsional shearing stresses, angle of twist, torsional rigidity, equation of torsion
	4 th	3.4 Combined bending and direct stresses Combination of stresses, Combined direct and bending stresses, Maximum and Minimum stresses in Sections
	5 th	3.4 Combined bending and direct stresses Conditions for no tension, Limit of eccentricity, Middle third/fourth rule
7 th	1 st	3.4 Combined bending and direct stresses Conditions for no tension, Limit of eccentricity, Middle third/fourth rule
	2 nd	3.4 Combined bending and direct stresses Core or Kern for square, rectangular and circular sections, chimneys, dams and retaining walls

	3 rd	3.4 Combined bending and direct stresses Core or Kern for square, rectangular and circular sections, chimneys, dams and	
7 th	4 th	retaining walls 3.4 Combined bending and direct stresses Core or Kern for square, rectangular and circular sections, chimneys, dams and retaining walls	
	5 th	4. Columns and Struts 4.1 Columns and Struts, Definition, Short and Long columns, End conditions, Equivalent length / Effective length, Slenderness ratio	
	1 st	4.1 Axially loaded short and long column, Euler's theory of long columns	
	2 nd	4.1 Critical load for Columns with different end conditions	
_th	3 rd	4.1 Critical load for Columns with different end conditions	
8 th	4 th	5. Shear Force and Bending Moment 5.1 Types of loads and beams Types of Loads: Concentrated (or) Point load, Uniformly Distributed load (UDL)	
	5 th	5.1 Types of loads and beams Types of Supports: Simple support, Roller support, Hinged support, Fixed support	
	1 st	5.1 Types of loads and beams Types of Reactions: Vertical reaction, Horizontal reaction, Moment reaction	
	2 nd	5.1 Types of loads and beams Types of Beams based on support conditions: Calculation of support reactions using equations of static equilibrium	
9 th	3 rd	5.1 Types of loads and beams Types of Beams based on support conditions: Calculation of support reactions using equations of static equilibrium	
	4 th	5.2 Shear force and bending moment in beams Shear Force and Bending Moment: Signs Convention for S.F. and B.M	
	5 th	5.2 Shear force and bending moment in beams S.F and B.M of general cases of determinate beams with concentrated loads and ud only	
	1 st	5.2 Shear force and bending moment in beams S.F and B.M diagrams for Cantilevers beams	
	2 nd	5.2 Shear force and bending moment in beams S.F and B.M diagrams for Simply supported beams and Over hanging beams	
10 th	3 rd	5.2 Shear force and bending moment in beams S.F and B.M diagrams for Simply supported beams and Over hanging beams	
	4 th	5.2 Shear force and bending moment in beams Position of maximum BM, Point of contra flexure	
	5 th	5.2 Shear force and bending moment in beams Relation between intensity of load, S.F and B.M.	

	1 st	INTERNAL ASSESMENT
11 th	2 nd	INTERNAL ASSESMENT
	3 rd	5.2 Shear force and bending moment in beams Relation between intensity of load, S.F and B.M.
	4 th	5.2 Shear force and bending moment in beams Relation between intensity of load, S.F and B.M.
	5 th	6. Slope and Deflection 6.1 Introduction Shape and nature of elastic curve (deflection curve)
	1 st	6.1 Introduction Shape and nature of elastic curve (deflection curve)
	2 nd	6.1 Introduction Relationship between slope, deflection and curvature (No derivation)
12 th	3 rd	6.1 Introduction Relationship between slope, deflection and curvature (No derivation)
	4 th	6.1 Introduction Importance of slope and deflection
	5 th	6.2 Slope and deflection of cantilever and simply supported beams under concentrated and uniformly distributed load (by Double Integration method, Macaulay's method).
	1 st	6.2 Slope and deflection of cantilever and simply supported beams under concentrated and uniformly distributed load (by Double Integration method, Macaulay's method).
	2 nd	6.2 Slope and deflection of cantilever and simply supported beams under concentrated and uniformly distributed load (by Double Integration method, Macaulay's method).
13 th	3 rd	6.2 Slope and deflection of cantilever and simply supported beams under concentrated and uniformly distributed load (by Double Integration method, Macaulay's method).
	4 th	6.2 Slope and deflection of cantilever and simply supported beams under concentrated and uniformly distributed load (by Double Integration method, Macaulay's method).
	5 th	6.2 Slope and deflection of cantilever and simply supported beams under concentrated and uniformly distributed load (by Double Integration method, Macaulay's method).
	1 st	6.2 Slope and deflection of cantilever and simply supported beams under concentrated and uniformly distributed load (by Double Integration method, Macaulay's method).
14th	2 nd	7. Indeterminate Beams 7.1Indeterminacy in beams, Principle of consistent deformation/compatibility
	3 rd	2.1Indeterminacy in beams, Principle of consistent deformation/compatibility
	4 th	7.1 Indeterminate Beams Analysis of propped cantilever

	The last	
14th	5 th	7.1 Indeterminate Beams Analysis of propped cantilever
	1 st	7.1fixed and two span continuous beams by principle of superposition
	2 nd	7.1fixed and two span continuous beams by principle of superposition
15 th	3 rd	7.1fixed and two span continuous beams by principle of superposition
	4 th	7.1fixed and two span continuous beams by principle of superposition
	5 th	7.1SF and BM diagrams (point load and udl covering full span)
	1 st	7.1SF and BM diagrams (point load and udl covering full span)
	2 nd	7.1SF and BM diagrams (point load and udl covering full span)
th	3 rd	7.1SF and BM diagrams (point load and udl covering full span)
16 th	4 th	8. Trusses 8.1 Introduction Types of trusses, statically determinate and indeterminate trusses
	5 th	8.1 Introduction degree of indeterminacy, stable and unstable trusses
	1 st	8.1 Introduction degree of indeterminacy, stable and unstable trusses
	2 nd	8.1 Introduction advantages of trusses
17 th	3 rd	8.2 Analysis of trusses Analytical method (Method of joints, method of Section)
	4 th	8.2 Analysis of trusses Analytical method (Method of joints, method of Section)
	5 th	8.2 Analysis of trusses Analytical method (Method of joints, method of Section)
	1 st	8.2 Analysis of trusses Analytical method (Method of joints, method of Section)
	2 nd	8.2 Analysis of trusses Analytical method (Method of joints, method of Section)
18 th	3 rd	8.2 Analysis of trusses Analytical method (Method of joints, method of Section)
	4 th	Revision
	5 th	Revision

Sign of Faculty

Sign of H.O.D.