

NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha)

LESSON PLAN

SUBJECT: Th-2 (ENERGY CONVERSION-II)

Name Of The Faculty :- ER BIJAYA KUMAR BEHERA

Branch: - ELECTRICAL ENGINEERING

Semester :- 5TH

Session :- 2024-25

Examination: 2024 (W)

CHAPTER WISE DISTRIBUTION OF PERIODS

Sl.No.	Name of the chapter as per the Syllabus	No. of Periods as per the Syllabus	No. of periods actually needed
1	Alternator(Synchronous generator)	14	18
2	Synchronous Motor	8	11
3	Induction motor	14	16
4	Single Phase induction motor	8	8
5	Commutator motors	6	6
6	Special Electric Machine	5	6
7	Three phase transformers	5	7
	TOTAL	60	72

Sign of Faculty

Sign of H.O.D.

Discipline: ELECTRICAL ENGINEERING	Semester: 3rd	Name of the Teaching Faculty: Er. BIJAYA KUMAR BEHERA		
		SESSION-2024-25	EXAMINATION-2024(W)	
Week	Class Day	Theory / Practical Topics		
1st	₁ st	1. ALTERNATOR: 1.1. Types of alternator and their constructional features		
	₂ nd	1.2. Basic working principl speed and	e of alternator and the relation between	
	3rd	1.2. Basic working principl	e of alternator and the relation between	
	₄th		ure winding and expressions for winding	
	₁ st	1.4. Explain harmonics, its	causes and impact on winding factor	
2 nd	₂ nd	1.4. Explain harmonics, its	causes and impact on winding factor	
Zna	3rd		ernator. (Solve numerical problems).	
	₄th	1.6. Explain Armature rea factor of	ction and its effect on emf at different power	
	₁ st	1.6. Explain Armature rea factor of	ction and its effect on emf at different power	
	₂ nd	1.7. The vector diagram o	f loaded alternator. (Solve numerical problems	
3 rd	3rd	1.7. The vector diagram o	f loaded alternator. (Solve numerical problems	
757 al 142	₄th	1.8. Testing of alternator 1.8.1. Open circuit test.	(Solve numerical problems)	
	1st	1.8.2. Short circuit test.		
	₂ nd	1.9. Determination of volt	age regulation of Alternator by direct loading	
4th	3rd	1.9. Determination of volt and	age regulation of Alternator by direct loading	
	4th	1.10. Parallel operation of bright lamp	alternator using synchro-scope and dark &	
5th	₁ st	1.11. Explain distribution	of load by parallel connected alternators.	
	₂nd	1.11. Explain distribution	of load by parallel connected alternators.	
	3rd	SYNCHRONOUS MOTOR: 2.1. Constructional featur	e of Synchronous Motor	
	₄th	2.2. Principles of operatio		

Week	Class Day	Theory / Practical Topics
i in	ıst	2.3. Derive torque, power developed.
6 th	₂nd	2.4. Effect of varying load with constant excitation.
	3rd	2.5. Effect of varying excitation with constant load.
	4th	2.6. Power angle characteristics of cylindrical rotor motor.
7 th	ıst	2.7. Explain effect of excitation on Armature current and power factor.
	2nd	2.8. Hunting in Synchronous Motor.
	3rd	2.9. Function of Damper Bars in synchronous motor and generator.
	4th	2.10. Describe method of starting of Synchronous motor.
	1st	2.11. State application of synchronous motor.
8th	₂ nd	THREE PHASE INDUCTION MOTOR: 3.1. Production of rotating magnetic field.
	3rd	3.2. Constructional feature of Squirrel cage and Slip ring induction motors
	4th	3.3. Working principles of operation of 3-phase Induction motor.
Ya muma - Dakan Jakkan	1st	3.4. Define slip speed, slip and establish the relation of slip with rotor quantities.
	2nd	3.5. Derive expression for torque during starting and running conditions and
9th	3rd	3.5. Derive expression for torque during starting and running conditions and
	4th	3.6. Torque-slip characteristics
10 th	1st	3.7. Derive relation between full load torque and starting torque etc. (solve
	₂nd	3.7. Derive relation between full load torque and starting torque etc. (solve
	3rd	3.8. Establish the relations between Rotor Copper loss, Rotor output and Gross
	4th	3.8. Establish the relations between Rotor Copper loss, Rotor output and Gross

Week	Class Day	Theory / Practical Topics
	1st	3.9. Methods of starting and different types of starters used for three phase
11 th	₂nd	3.10. Explain speed control by Voltage Control, Rotor resistance control, Pole
	3rd	3.11. Plugging as applicable to three phase induction motor
	4th	3.12. Describe different types of motor enclosures
	1st	3.13. Explain principle of Induction Generator and state its applications.
12 th	2nd	SINGLE PHASE INDUCTION MOTOR: 4.1. Explain Ferrari's principle
	3rd	4.2. Explain double revolving field theory and Cross-field theory to
	4th	4.3. Explain Working principle, Torque speed characteristics, performance characteristics and application of following single phase motors.
	ıst	4.3.2. Capacitor Start motor.
13 th	₂ nd	4.3.3. Capacitor start, capacitor run motor
	3rd	4.3.4. Permanent capacitor type motor.
	4th	4.3.5. Shaded pole motor.
	₁ st	4.4. Explain the method to change the direction of rotation of above motors.
4.44	₂ nd	5.1. Construction, working principle, running characteristic and application of
14 th	3rd	application of single phase series motor.
	4th	5.2. Construction, working principle and application of Universal motors
15 th	1st	5.2. Construction, working principle and application of Universal motors
	₂ nd	5.3. Working principle of Repulsion start Motor, Repulsion start Induction run
	3rd	5.3. Working principle of Repulsion start Motor, Repulsion start Induction run motor, Repulsion Induction motor.
	₄th	6. SPECIAL ELECTRICAL MACHINE: 6.1. Principle of Stepper motor.

Week	Class Day	Theory / Practical Topics
	ıst	6.2. Classification of Stepper motor.
16 th	₂ nd	6.3. Principle of variable reluctant stepper motor.
	3rd	6.4. Principle of Permanent magnet stepper motor.
	4th	6.5. Principle of hybrid stepper motor.
OF POST A	1st	6.6. Applications of Stepper motor.
17 th	₂nd	THREE PHASE TRANSFORMERS: 7.1. Explain Grouping of winding, Advantages.
	3rd	7.2. Explain parallel operation of the three phase transformers.
	₄th	7.3. Explain tap changer (On/Off load tap changing)
18 th	1st	7.4. Maintenance Schedule of Power Transformers.
	₂ nd	7.4. Maintenance Schedule of Power Transformers.
	3rd	RIVISION
	₄th	RIVISION

Sign. Of Raculty

Sign. Of HOD