

NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha)

LESSON PLAN

SUBJECT: DIGITAL ELECTRONICS & MICROPROCESSOR(Th-3)

Name Of The Faculty :- Er.Biswajit Parida

Branch: - Electrical Engg.

Session :- 2024-25

Semester: 5th

Examination :- 2024 (W)

CHAPTER WISE DISTRIBUTION OF PERIODS

	O. W. H. T.	* *	
Sl.No.	Name of the chapter as per the Syllabus	No. of Periods as per the Syllabus	No. of periods actually needed
1	Basics Of Digital Electronics	15	16
2	Combinational Logic Circuits	15	16
3	Sequential Logic Circuits	15	16
4	8085 Microprocessor	20	20
5	Interfacing And Support Chips	10	11
	Total periods	75	79

Sign of Faculty

Sign of H.O.D.

Discipline :	Semester:	Name of the Teaching Faculty: Er.Biswajit Parida
EE .	5th	SESSION : 2024-25 EXAMINATION : 2024 (S)
Week	Class Day	Theory / Practical Topics
ng menggan pangangan pangan	1 st	BASICS OF DIGITAL ELECTRONICS 1.1 Binary, Octal, Hexadecimal number systems and compare with Decimal system.
ilian yaz ez ez leten ez e en ez Gazztota egazteta egazta	2 nd	1.2 Binary addition, subtraction, Multiplication and Division.
1 st	3 rd	1.2 Binary addition, subtraction, Multiplication and Division.
	4 th	1.3 1's complement and 2's complement numbers for a binary number
sa 0 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 th	1.4 Subtraction of binary numbers in 2's complement method.
	1 st	1.5 Use of weighted and Un-weighted codes & write Binary equivalent number for a number in 8421, Excess-3 and Gray Code and vice-versa.
	2 nd	1.6 Importance of parity Bit.
2 nd	3 rd	1.7 Logic Gates: AND, OR, NOT, NAND, NOR and EX-OR gates with truth table.
	4 th	1.7 Logic Gates: AND, OR, NOT, NAND, NOR and EX-OR gates with truth table.
	5 th	1.8 Realize AND, OR, NOT operations using NAND, NOR gates.
1. v ₂ 1.	1 st	1.8 Realize AND, OR, NOT operations using NAND, NOR gates.
	2 nd	1.9 Different postulates and De-Morgan's theorems in Boolean algebra.
3 rd	3 rd	1.9 Different postulates and De-Morgan's theorems in Boolean algebra.
	4 th	1.10 Use Of Boolean Algebra For Simplification Of Logic Expression
		.11 Karnaugh Map For 2,3,4 Variable, Simplification Of SOP And POS Logic Expression Ising K-Map.
	7	1.11 Karnaugh Map For 2,3,4 Variable, Simplification Of SOP And POS Logic Expression Using K-Map.
	2 ^{na}	2. COMBINATIONAL LOGIC CIRCUITS 2.1 Give the concept of combinational logic circuits.
4 th	3 rd	2.2 Half adder circuit and verify its functionality using truth table.
	4 th	2.2 Half adder circuit and verify its functionality using truth table.
	5 th	2.3 Realize a Half-adder using NAND gates only and NOR gates only.

eek	Class Day	Theory / Practical Topics
	1 st	2.3 Realize a Half-adder using NAND gates only and NOR gates only.
	2 nd	2.4 Full adder circuit and explain its operation with truth table
5 th	3 rd	2.4 Full adder circuit and explain its operation with truth table
	4 th	2.5 Realize full-adder using two Half-adders and an OR – gate and write truth table
	5 th	2.5 Realize full-adder using two Half-adders and an OR – gate and write truth table
S. Seese A. Sabeleo	1 st	2.6 Full subtractor circuit and explain its operation with truth table.
	2 nd	2.7 Operation of 4 X 1 Multiplexers and 1 X 4 demultiplexer
6 th	3 rd	2.7 Operation of 4 X 1 Multiplexers and 1 X 4 demultiplexer
	4 th	2.8 Working of Binary-Decimal Encoder & 3 X 8 Decoder
	5 th	2.8 Working of Binary-Decimal Encoder & 3 X 8 Decoder
7 th	1 st	2.9 Working of Two bit magnitude comparator.
	2 nd	2.9 Working of Two bit magnitude comparator.
	3 rd	3. SEQUENTIAL LOGIC CIRCUITS 3.1 Give the idea of Sequential logic circuits.
	4 th	3.2 State the necessity of clock and give the concept of level clocking and edge triggering
	5 th	3.3 Clocked SR flip flop with preset and clear inputs.
8 th	1 st	3.5 Construct level clocked JK flip flop using S-R flip-flop and explain with truth table
	2 nd	3.6 Concept of race around condition and study of master slave JK flip flop.
	3 rd	3.6 Concept of race around condition and study of master slave JK flip flop.
	4 th	3.7 Give the truth tables of edge triggered D and T flip flops and draw their symbols.
	5 th	3.8 Applications of flip flops.

Week	Class Day	Theory / Practical Topics	_
9 th	1 st	3.9 Define modulus of a counter	
	2 nd	3.10 4-bit asynchronous counter and its timing diagram.	
	3 rd	3.11 Asynchronous decade counter	+1
	4 th	3.12 4-bit synchronous counter.	
	5 th	3.13 Distinguish between synchronous and asynchronous counters.	
10 th	1 st	3.14 State the need for a Register and list the four types of registers	y .
	2 nd	3.15 Working of SISO, SIPO, PISO, PIPO Register with truth table using flip flop.	
	3 rd	3.15 Working of SISO, SIPO, PISO, PIPO Register with truth table using flip flop.	
	4 th	4. 8085 MICROPROCESSOR 4.1 Introduction to Microprocessors, Microcomputers	-
	5 th	4.2 Architecture of Intel 8085A Microprocessor and description of each block.	
	1 st	4.2 Architecture of Intel 8085A Microprocessor and description of each block.	
	2 nd	4.3 Pin diagram and description.	
11 th	3 rd	4.3 Pin diagram and description.	
	4 th	4.4 Stack, Stack pointer & stack top	
	5 th	4.5 Interrupts	
Trant-ace	1 st	4.6 Opcode & Operand,	
12 th	2 nd	4.7 Differentiate between one byte, two byte & three byte instruction with example	le.
12	3 rd	4.8 Instruction set of 8085 example	
	4 th	4.8 Instruction set of 8085 example	
	5 th	4.9 Addressing mode	
	1 st	4.9 Addressing mode	y
13 th	2 nd	4 .10 Fetch Cycle, Machine Cycle, Instruction Cycle, T-State	
	3 rd	4.11 Timing Diagram for memory read, memory write, I/O read, I/O write	
	4 th	4.11 Timing Diagram for memory read, memory write, I/O read, I/O write	
	5 th	4.12 Timing Diagram for 8085 instruction	ne ou f

Veek	Class Day	Theory / Practical Topics
14 th	1 st	4.13 Counter and time delay.
	2 nd	4. 14 Simple assembly language programming of 8085.
	3 rd	4. 14 Simple assembly language programming of 8085.
		5. INTERFACING AND SUPPORT CHIPS
	4 th	5.1 Basic Interfacing Concepts, Memory mapping & I/O mapping
	5 th	5.1 Basic Interfacing Concepts, Memory mapping & I/O mapping
15 th	1 st	5.2 Functional block diagram and description of each block of Programmable peripheral interface Intel 8255
	2 nd	5.2 Functional block diagram and description of each block of Programmable peripheral interface Intel 8255
	3 rd	5.2 Functional block diagram and description of each block of Programmable peripheral interface Intel 8255
	4 th	5.2 Functional block diagram and description of each block of Programmable peripheral interface Intel 8255
	5 th	5.3 Application using 8255: Seven segment LED display, Square wave generator, Traffic light Controller
16	1 st	5.3 Application using 8255: Seven segment LED display, Square wave generator, Traffic light Controller
	2 nd	5.3 Application using 8255: Seven segment LED display, Square wave generator, Traffic light Controller
	3 rd	5.3 Application using 8255: Seven segment LED display, Square wave generator, Traffic light Controller
	4 th	5.3 Application using 8255: Seven segment LED display, Square wave generator, Traffic light Controller

SIGN. OF HOD

SIGN. OF FACULTY