

NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha)

LESSON PLAN

SUBJECT: TH-3 (CONTROL SYSTEM ENGINEERING)

Name Of The Faculty :- Er.SOUMYAJIT ROUT

Branch: - Electrical Engineering

Session :- 2024-25

Semester :- 6th

Examination: - 2025(S)

CHAPTER WISE DISTRIBUTION OF PERIODS

		1	
Sl.No.	Name of the chapter as per the Syllabus	No. of Periods as per the Syllabus	No. of periods actually needed
1	Fundamental of control system	4	5
2	Mathematical model of a system	4	5
3	Control system components	4	5
4	Block diagram algebra & signal flow graphs	8	13
5	Time response analysis	10	14
6	Analysis of stability by root locus technique	10	6
7	Frequency response of system	10	14
8	Nyquist plot	10	
	Total periods	60	

Sign of Faculty

Sign of H.O.D.

EE	6th	SESSION : 2024-25 EXAMINATION : 2025 (S)
Week	Class Day	Theory / Practical Topics
	1 st	FUNDAMENTAL OF CONTROL SYSTEM
i interior de		1.1. Classification of Control system
	2 nd	1.2. Open loop system & Closed loop system and its comparison
1 st	3 rd	1.3. Effects of Feed back
	4 th	1.4. Standard test Signals(Step, Ramp, Parabolic, Impulse Functions)
	5 th	1.5. Servomechanism
	1 st	MATHEMATICAL MODEL OF A SYSTEM
- 185 - 6742	1 10	2.1. Transfer Function & Impulse response
	2 nd	2.2. Properties, Advantages & Disadvantages of Transfer Function
2 nd	3 rd	2.3. Poles & Zeroes of transfer Function
1857 Company of Section	4 th	2.4. Simple problems of transfer function of network.
The second second	5 th	2.5. Mathematical modeling of Electrical Systems(R, L, C, Analogous systems)
		CONTROL SYSTEM COMPONENTS
978	1 -	3.1. Components of Control System
18 02	2 nd 3	3.1. Components of Control System
3 rd	3 rd 3	.2. Gyroscope, Synchros, Tachometer, DC servomotors, Ac Servomotors.
, 28 A	4 th 3	.2. Gyroscope, Synchros, Tachometer, DC servomotors, Ac Servomotors.
	5 th 3	.2. Gyroscope, Synchros, Tachometer, DC servomotors, Ac Servomotors.
	1 st B	LOCK DIAGRAM ALGEBRA & SIGNAL FLOW GRAPHS
		1. Definition: Basic Elements of Block Diagram
		2. Canonical Form of Closed loop Systems
th	3 rd 4.	2. Canonical Form of Closed loop Systems
	4 th 4.	3. Rules for Block diagram reduction
	5 th 4.	3. Rules for Block diagram reduction

veek	Class Day	Theory / Practical Topics
k og men skale skale blade	1 st	4.4. Procedure for of Reduction of Block Diagram
	2 nd	4.4. Procedure for of Reduction of Block Diagram
5 th	3 rd	4.5. Simple Problem for equivalent transfer function
	4 th	4.6. Basic Definition in Signal Flow Graph & properties
	5 th	4.7. Construction of Signal Flow graph from Block diagram
, was a	1 st	4.8. Mason's Gain formula
	2 nd	4.9. Simple problems in Signal flow graph for network
6 th	3 rd	4.9. Simple problems in Signal flow graph for network
	4 th	TIME RESPONSE ANALYSIS. 5 . 1 Time response of control system.
	5 th	5 . 2 Standard Test signal. 5.2.1. Step signal, 5.2.2. Ramp Signal
r ar a re	1 st	5.2.3. Parabolic Signal 5.2.4. Impulse Signal
7 th	1 2	5 . 3 Time Response of first order system with: 5.3.1. Unit step response 5.3.2. Unit impulse response.
		5 . 3 Time Response of first order system with: 5.3.1. Unit step response 5.3.2. Unit impulse response.
	4 th	5.4.1. Time response specification.
	5 th	5.4.2. Derivation of expression for rise time, peak time, peak overshoot, settling time and steady state error.
	1 st	5.4.3. Steady state error and error constants.
8 th	2 nd	5 . 5 Types of control system.[Steady state errors in Type-0, Type-1, Type-2 system]
	3 rd	5 . 5 Types of control system.[Steady state errors in Type-0, Type-1, Type-2 system]
	4 th	5 . 6 Effect of adding poles and zero to transfer function.

Week	Class Day	Theory / Practical Topics
	1 st	5 . 7 Response with P, PI, PD and PID controller.
	2 nd	5 . 7 Response with P, PI, PD and PID controller.
	2	ANALYSIS OF STABILITY BY ROOT LOCUS TECHNIQUE.
9 th	3 rd	6 . 1 Root locus concept.
	4 th	6 . 2 Construction of root loci.
	5 th	6 . 2 Construction of root loci.
	1 st	6 . 3 Rules for construction of the root locus.
	1	Sold His
	2 nd	6.4 Effect of adding poles and zeros to G(s) and H(s).
10 th	3 rd	6 . 4 Effect of adding poles and zeros to G(s) and H(s).
	•h	FREQUENCY RESPONSE ANALYSIS.
	4 th	7 . 1 Correlation between time response and frequency response.
our of her and he	5 th	.7 . 1 Correlation between time response and frequency response.
	1 st	7 . 2 Polar plots.
	2 nd	7 . 3 Bode plots.
11 th	3 rd	7 . 3 Bode plots.
	4 th	7 . 4 All pass and minimum phase system
	5 th	7 . 4 All pass and minimum phase system
	1 st	7 . 5 Computation of Gain margin and phase margin.
	2 nd	7 . 5 Computation of Gain margin and phase margin.
12 th	3 rd	7 . 6 Log magnitude versus phase plot.
	4 th	7 . 6 Log magnitude versus phase plot.
araber 1	5 th	7 . 7 Closed loop frequency response.
	1 st	7 . 7 Closed loop frequency response.
	2 nd	7 . 7 Closed loop frequency response.
13 th	3 rd	NYQUIST PLOT
13	4 th	8.1 Principle of argument. NYQUIST PLOT
		8.1 Principle of argument.
	5 th	8.2 Nyquist stability criterion.

1.7526.500

k (Class Day	Theory / Practical Topics
-	1 st	8.2 Nyquist stability criterion.
	2 nd	8.3 Niquist stability criterion applied to inverse polar plot.
	3 rd	8.3 Niquist stability criterion applied to inverse polar plot.
	4 th	8.4 Effect of addition of poles and zeros to G(S) H(S) on the shape of Niquist plot.
	5 th	8.5 Assessment of relative stability.
	1 st	8.5 Assessment of relative stability.
	2 nd	8.6 Constant M and N circle
	3 rd	8.6 Constant M and N circle
	4 th	8.6 Constant M and N circle
	5 th	8.7 Nicholas chart
	1 st	8.7 Nicholas chart
	2 nd	8.7 Nicholas chart
•	3 rd	RIVISION
	4 th	RIVISION

SIGN. OF FACULTY

SIGN. OF HOD