Semester: - 5th

NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha)

LESSON PLAN

SUBJECT: DIGITAL ELECTRONICS & MICROPROCESSOR(Th-3)

Name Of The Faculty: - Er. Prakash kumar Mohanty

Branch: - Electrical & Electronics Engg.

CHAPTER WISE DISTRIBUTION OF PERIODS

CHAPTER WISE DISTRIBUTION OF PERIODS			
Sl.No.	Name of the chapter as per the Syllabus	No. of Periods as per the Syllabus	No. of periods actually needed
1	Basics Of Digital Electronics	15	16
2	Combinational Logic Circuits	15	16
3	Sequential Logic Circuits	15	16
4	8085 Microprocessor	20	20
5	Interfacing And Support Chips	10	11
	Total periods	75	79

Sign of Faculty

Sign of H.O.D.

Discipline:		Name of the Teaching Faculty: Er.Biswajit Parida EXAMINATION: 2024 (S)			
EEE	5th	SESSION: 2024-25			
Week Class D		y Theory / Practical Topics			
	1 st	BASICS OF DIGITAL ELECTRONICS In Binary, Octal, Hexadecimal number systems and compare with Decimal systems. In the state of the systems are compared with Decimal systems.			
eri e dina g	2 nd	1.2 Binary addition, subtraction, Multiplication and Division.			
1 st	3 rd	1.2 Binary addition, subtraction, Multiplication and Division.			
	4 th	1.3 1's complement and 2's complement numbers for a binary number			
	5 th	1.4 Subtraction of binary numbers in 2's complement method.			
	1 st	1.5 Use of weighted and Un-weighted codes & write Binary equivalent number for a number in 8421, Excess-3 and Gray Code and vice-versa.			
	2 nd	1.6 Importance of parity Bit.			
2 nd	3 rd	1.7 Logic Gates: AND, OR, NOT, NAND, NOR and EX-OR gates with truth table.			
e e e e e e e e e e e e e e e e e e e	4 th	1.7 Logic Gates: AND, OR, NOT, NAND, NOR and EX-OR gates with truth table.			
	5 th	1.8 Realize AND, OR, NOT operations using NAND, NOR gates.			
	1 st	8 Realize AND, OR, NOT operations using NAND, NOR gates.			
		.9 Different postulates and De-Morgan's theorems in Boolean algebra.			
rd		9 Different postulates and De-Morgan's theorems in Boolean algebra.			
4	-	10 Use Of Boolean Algebra For Simplification Of Logic Expression			
5		1 Karnaugh Map For 2,3,4 Variable, Simplification Of SOP And POS Logic Expression ng K-Map.			
15		1 Karnaugh Map For 2,3,4 Variable, Simplification Of SOP And POS Logic Expression og K-Map.			
2 nd	2. C	OMBINATIONAL LOGIC CIRCUITS			
3 rd	2.21	Give the concept of combinational logic circuits. Half adder circuit and verify its functionality using truth table.			
4 th		lalf adder circuit and verify its functionality using truth table.			
5 th		ealize a Half-adder using NAND gates only and NOR gates only.			

/eek	Class Day	Theory / Practical Topics	
	1 st	2.3 Realize a Half-adder using NAND gates only and NOR gates only.	
	2 nd	2.4 Full adder circuit and explain its operation with truth table	
5 th	3 rd	2.4 Full adder circuit and explain its operation with truth table	
	4 th	2.5 Realize full-adder using two Half-adders and an OR – gate and write truth table	
	5 th	2.5 Realize full-adder using two Half-adders and an OR – gate and write truth table	
6 th	1 st	2.6 Full subtractor circuit and explain its operation with truth table.	
	2 nd	2.7 Operation of 4 X 1 Multiplexers and 1 X 4 demultiplexer	
	3 rd	2.7 Operation of 4 X 1 Multiplexers and 1 X 4 demultiplexer	
	4 th	2.8 Working of Binary-Decimal Encoder & 3 X 8 Decoder	
	5 th	2.8 Working of Binary-Decimal Encoder & 3 X 8 Decoder	
	1 st	2.9 Working of Two bit magnitude comparator.	
	2 nd	2.9 Working of Two bit magnitude comparator.	
7 th	3 rd	3. SEQUENTIAL LOGIC CIRCUITS 3.1 Give the idea of Sequential logic circuits.	
	4 th	3.2 State the necessity of clock and give the concept of level clocking and edge triggering	
	5 th	3.3 Clocked SR flip flop with preset and clear inputs.	
8 th	1 st	3.5 Construct level clocked JK flip flop using S-R flip-flop and explain with truth table	
	2 nd	3.6 Concept of race around condition and study of master slave JK flip flop.	
	3	3.6 Concept of race around condition and study of master slave JK flip flop.	
	4 th	3.7 Give the truth tables of edge triggered D and T flip flops and draw their symbols.	
	5 th	3.8 Applications of flip flops.	

Week	Class Day	Theory / Practical Topics	
	1 st	3.9 Define modulus of a counter	
	2 nd	3.10 4-bit asynchronous counter and its timing diagram.	
9 th	3 rd	3.11 Asynchronous decade counter	
	4 th	3.12 4-bit synchronous counter.	
	5***	3.13 Distinguish between synchronous and asynchronous counters.	
10 th	1 1	3.14 State the need for a Register and list the four types of registers	
	2 nd	3.15 Working of SISO, SIPO, PISO, PIPO Register with truth table using flip flop.	
	3 rd	3.15 Working of SISO, SIPO, PISO, PIPO Register with truth table using flip flop.	
		4. 8085 MICROPROCESSOR 4.1 Introduction to Microprocessors, Microcomputers	
	5"	4.2 Architecture of Intel 8085A Microprocessor and description of each block.	
	1 st	4.2 Architecture of Intel 8085A Microprocessor and description of each block.	
	2 nd	4.3 Pin diagram and description.	
11 th	3 rd	4.3 Pin diagram and description.	
	4 th	4.4 Stack, Stack pointer & stack top	
	5 th	4.5 Interrupts	
n 182 ng	1 st	4.6 Opcode & Operand,	
	2 nd	4.7 Differentiate between one byte, two byte & three byte instruction with example.	
12 th	3 rd	1.8 Instruction set of 8085 example	
2.40	4 th	1.8 Instruction set of 8085 example	
	5 th	1.9 Addressing mode	
	1 st	1.9 Addressing mode	
13 th	2 nd	.10 Fetch Cycle, Machine Cycle, Instruction Cycle, T-State	
	3 rd	1.11 Timing Diagram for memory read, memory write, I/O read, I/O write	
	4 th	1.11 Timing Diagram for memory read, memory write, I/O read, I/O write	
	5 th 4	.12 Timing Diagram for 8085 instruction	

Week	Class Day	Theory / Practical Topics
14 th	1 st	4.13 Counter and time delay.
	2 nd	4. 14 Simple assembly language programming of 8085.
	3 rd	4. 14 Simple assembly language programming of 8085.
	4 th	5. INTERFACING AND SUPPORT CHIPS 5.1 Basic Interfacing Concepts, Memory mapping & I/O mapping
	5 th	5.1 Basic Interfacing Concepts, Memory mapping & 1/0 mapping
15 th	1 st	5.2 Functional block diagram and description of each block of Programmable peripheral interface Intel 8255
	2 nd	interface Intel 8255 5.2 Functional block diagram and description of each block of Programmable peripheral interface Intel 8255
	3 rd	interface Intel 8255 5.2 Functional block diagram and description of each block of Programmable peripheral interface Intel 8255
	4 th	interface Intel 8255 5.2 Functional block diagram and description of each block of Programmable peripheral interface Intel 8255
	5 th	interface Intel 8255 5.3 Application using 8255: Seven segment LED display, Square wave generator, Traffic light Controller
	1 st	Controller 5.3 Application using 8255: Seven segment LED display, Square wave generator, Traffic light Controller
	2 nd	Controller 5.3 Application using 8255: Seven segment LED display, Square wave generator, Traffic light Controller
16	3 rd	5.3 Application using 8255: Seven segment LED display, Square wave generator, Traffic light Controller
	4 th	5.3 Application using 8255: Seven segment LED display, Square wave generator, Traffic light Controller

SIGN. OF HOD

SIGN. OF FACULTY