NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE & affiliated to SCTE & VT, Odisha)

LESSON PLAN

SUBJECT:Th.3 (DIGITAL SIGNAL PROCESSING)

Name of the Faculty- Er.RAKESH KUMAR SETHI

Branch- Electrical & Electronics Engineering

Session- 2024-25

Semester- 6th

Examination- 2025(S)

	EX	amination- 2025(S)	
	CHAPTER WISE DISTRIBUTION OF I	PERIODS	
	Name of the chapter as per the Syllabus	No. of Periods as per the	No. of
SI.No.		Syllabus	periods
			needed
1	INTRODUCTION OF SIGNAL, SYSTEMS & SIGNAL PROCESSING	10	10
2	DISCRETE TIME SIGNALS & SYSTEMS	14	14
3	THE Z-TRANSFORM & ITS APPLICATION TO THE ANALYSIS OF	14	14
4	DISCUSS FOURIER TRANSFORM: ITS APPLICATIONS PROPERTIES	12	12
5	FAST FOURIER TRANSFORM ALGORITHM & DIGITAL FILTERS	10	10
Ngar "	TOTAL	60	60

SIGN OF FACULTY

SIGN HOD

Discipline: ELECTRICAL& ELECTRONICS	Semester: 5TH	Name of the Teaching Faculty: Er. RAKESH KUMAR SETHI		
ENGG.		SESSION: 2024-25	EXAMINATION: 2024 (W)	
Week	Class Day		Theory / Practical Topics	
	1 st	1.1 Basics of Signals, Syst	systems & Signal processing tems & Signal processing-basic element of a system -Compare the advantages of digital signal ignal processing.	
	2nd	1.1 Basics of Signals, Sys	Systems & Signal processing tems & Signal processing-basic element of a system -Compare the advantages of digital signal ignal processing.	
1 st	3rd		ti channel& Multi-dimensional signals-Continuous nes SignalContinuous valued verses Discrete -	
	4 th		ti channel& Multi-dimensional signals-Continuous nes SignalContinuous valued verses Discrete -	
	5th		TUTORIAL	
	1st		y in continuous time & discrete time signals- dal signals-Discrete-time sinusoidal signals- mplex exponential.	
	2nd	· · · · · · · · · · · · · · · · · · ·	y in continuous time & discrete time signals- dal signals-Discrete-time sinusoidal signals- mplex exponential.	
2 nd	3rd		y in continuous time & discrete time signals- idal signals-Discrete-time sinusoidal signals- mplex exponential.	
	4 th	1.4 Analog to Digital & D following. a. Sampling of Analog sig	pigital to Analog conversion & explain the gnal,	
	5 th		TUTORIAL	

Neek	Class Day	Theory / Practical Topics
	1st	b. The sampling theorem.
	7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	c. Quantization of continuous amplitude signals,
	2 nd	d. Coding of quantized sample.
		e. Digital to analog conversion.
	A 2, 1	f. Analysis of digital systems signals vs. discrete time signals systems.
	3rd	Concept of Discrete time signals. Elementary Discrete time signals.
3 rd		
	4 th	Concept of Discrete time signals. Elementary Discrete time signals.
	- 1	
	5 th	TUTORIAL
	1st	Classification Discrete time signal.
		Simple manipulation of discrete time signal.
	2 nd	Discrete time system. Input-output of system.
4 th	3rd	2.2.2 Block diagram of discrete- time systems
		and a discrete time systems
	4 th	Classify discrete time system.
		Inter connection of discrete -time system.
	5 th	TUTORIAL
	1 st	Discrete time time-invariant system.
		Different techniques for the Analysis of linear system.
	2nd	Resolution of a discrete time signal in to impulse.
		Response of LTI system to arbitrary inputs using convolution sum.
	3rd	2.3.4 Convolution & interconnection of LTI system - properties.
5 th	3.5	2.3.4 Convolution & interconnection of LTI system - properties.
	2 <u>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 </u>	2.3.5 Study systems with finite duration and infinite duration impulse
	4 th	response.
	5 th	TUTORIAL
	5 th	TOTORIAL

Veek	Class Day	Theory / Practical Topics
	1 st	Discrete time system described by difference equation. Recursive & nor recursive discrete time system.
	2 nd	2.4.2 Determine the impulse response of linear time invariant recursive system.
6 th	3rd	2.4.2 Determine the impulse response of linear time invariant recursive system.
6	4 th	2.4.3 Correlation of Discrete Time signals
	5 th	TUTORIAL
	1st	3 THE Z-TRANSFORM & ITS APPLICATION TO THE ANALYSIS OF LTI SYSTEM. 3.1 Z-transform & its application to LTI system.
7 th	2 nd	3 THE Z-TRANSFORM & ITS APPLICATION TO THE ANALYSIS OF LTI SYSTEM. 3.1 Z-transform & its application to LTI system.
	3rd	3.1.1 Direct Z-transform.
	4 th	3.1.2 Inverse Z-transform.
	5 th	TUTORIAL
	1st	3.2 Various properties of Z-transform.
	2nd	3.3 Rational Z-transform.
gth	3rd	3.3.1 Poles & zeros
	4 th	3.3.2 Pole location time domain behaviour for casual signals.
		TUTORIAL

eek	Class Day	Theory / Practical Topics
	1st	3.3.3 System function of a linear time invariant system.
9 th	2 nd	
		Discuss inverse Z-transform.
		Inverse Z-transform by partial fraction expansion
	3rd	Discuss inverse Z-transform.
		Inverse Z-transform by partial fraction expansion
3- =	4 th	TUTORIAL
	1 st	3.4.2 Inverse Z-transform by contour Integration
	2nd	3.4.2 Inverse Z-transform by contour Integration
	3rd	4: DISCUSS FOURIER TRANSFORM: ITS APPLICATIONS PROPERTIES.
10 th		4.1 Concept of discrete Fourier transform.
	4 th	
		4.2 Frequency domain sampling and reconstruction of discrete time signals.
	5 th	TUTORIAL
	1st	4.2 Frequency domain sampling and reconstruction of discrete time signals.
	2 nd	
		4.3 Discrete Time Fourier transformation(DTFT)
	3rd	
11th		4.3 Discrete Time Fourier transformation(DTFT)
	4 th	4.4 Discrete Fourier transformation (DFT).

	5 th	TUTORIAL	
	Class Day	Theory / Practical Topics	
	1st	4.5 Compute DFT as a linear transformation.	
	2 nd	4.5 Compute DFT as a linear transformation.	
12 th	3rd	4.6 Relate DFT to other transforms.	
	4th	4.6 Relate DFT to other transforms.	
	5 th	TUTORIAL	ì
	1 st	4.7 Property of the DFT.	
	2 nd	4.8 Multiplication of two DFT & circular convolution	
13 th	3rd	5 FAST FOURIER TRANSFORM ALGORITHM & DIGITAL FILTERS. 5.1 Compute DFT & FFT algorithm.	
	4 th	5.2 Direct computation of DFT.	
	5th	TUTORIAL	
	1st	5.3 Divide and Conquer Approach to computation of DFT	
	2 nd	5.4 Radix-2 algorithm. (Small Problems)	
14 th	3rd	5.5 Application of FFT algorithms	
	4th	5.5 Application of FFT algorithms	
	5 th	TUTORIAL	

Week	Class Day	Theory / Practical Topics
	1st	5.6 Introduction to digital filters.(FIR Filters)& General considerations
15 th	2 nd	5.7 Introduction to DSP architecture, familiarisation of different types of processor
	3rd	5.7 Introduction to DSP architecture, familiarisation of different types of processor
	4 th	TUTORIAL

SIGN OF ACULTY

SIGN OF HOD