

NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha)

LESSION PLAN

SUBJECT:TH-1: ENGG. MATHEMATICS-III

NAME OF THE FACULTY:BINDUPUSPA SHA

BRANCH: ELECTRICAL & ELECTRONICS ENGINEERING

SEMESTER: 3RD

EXAMINATION: 2024(W)

SESSION:2024-25

CHAPTER WISE DISTRIBUTION OF PERIODS

SL. NO.	Name of the chapter as per the syllabus	No. of periods as per the syllabus	No. of periods actually covered
1	COMPLEX NUMBER	6	9
2	MATRICES	4	9
3	DIFFERENTIAL EQUATION	10	8
4	LAPLACE TRANSFORMATION	12	12
5	FOURIER SERIES	12	12
6	NUMERICAL METHODS	4	8
7	FINITE DIFFERENCES AND INTERPOLATION	12	12
	TOTAL	60	70

SIGN: OF H.O.D

Bindeepus pa Sha SIGN. OF FACULTY

DISCIPLINE:E EE	SEMESTER: 3RD	NAME OF THE FACULTY:Bindupuspa Sha	
		SESSION:2024-25 EXAMINATION:2024(W	
WEEK	CLASS DAY	TOTICS TO BE CONTINUE	
1ST	1ST	UNIT:I:-COMPLEX NUMBERS: Real and Imaginary part of a complexnumbers.	
	2ND	conjugate of a complex numbers	
	3RD	modulus of a complex number	
	4TH	amplitude of a complex number	
	1ST	geometrical representation of a complex number	
2ND	2ND	properties of a complex number	
	3RD	determination of three cube roots of units	
	4TH	properties of three cube roots of unity	
	1ST	De- moiver's theorem	
300	2ND	UNIT:II:- MATRICES:Introduction of matrices and their properties	
3RD —	3RD	Rank of a matrices	
	4ТН	perform elementary row transformations to determine the rank of a matrices	
	1ST	perform elementary row transformations to determine the rank of a matrices	
4711	7 KII Y	State Rouche's theorem for consistency of a system of linear equations in unknowns	
4TH	20N I	State Rouche's theorem for consistency of a system of linear equations in unknowns	
	ATU I	State Rouche's theorem for consistency of a system of linear equations in unknowns	
	1ST 5	olve equations in three unknowns testing consistency	
5TH	2ND S	olve equations in three unknowns testing consistency	
	3RD L	INIT:III:-DIFFERENTIAL EQUATIONS: Define Homogeneous and Non – lomogeneous Linear Differential Equations with constant coefficients with	
	_	ind general solutions of linear differential equations in terms of C.F and P.I	

EEK	CLASS DAY	TOPICS TO BE COVERED	
6ТН	1ST	Find general solutions of linear differential equations in terms of C.F and P.I	
	2ND	Derive rules for finding C.F & P.I in terms of operator D excluding	
	3RD	Define partial differential equations	
	4TH	Form partial differential equation by eliminating arbitrary constant and arbitrary functions	
7ТН	1ST	Form partial differential equation by eliminating arbitrary constant and arbitrary functions	
	2ND	Solve problems of linear differential equations	
	3RD	UNIT:IV:-LAPLACE TRANSFORMATIONS: Define Gamma functions and their propeties	
	4TH	Define Laplace transform and inverse Laplace transform of a function	
8TH	1ST	Define Laplace transform and inverse Laplace transform of a function	
	2ND	Define Laplace transform and inverse Laplace transform of a function	
	3RD	Define L.T of standard functions and explain existence conditions of L.T	
	4TH	Define L.T of standard functions and explain existence conditions of L.T	
9ТН	1ST	Explain linear , shifting property of L.T	
	2ND	Explain linear , shifting property of L.T	
	3RD	Formulate L.T. of derivatives , integrals , multiplication by t^n and division by t	
	4TH	Formulate L.T. of derivatives , integrals , multiplication by t^n and division by t	
	1ST	Derive formulae of inverse L.T and explain method of partial fraction	
	2ND	Derive formulae of inverse L.T and explain method of partial fraction	
10TH	3RD	UNIT:V:- FOURIER SERIES: Define periodic functions.	
	4TH	State Dirichlet's condition for Fourier expansion of a funtion and it's convergence	

NEEK	CLASS DAY	TOPICS TO BE COVERED	
11TH	1ST	State Dirichlet's condition for Fourier expansion of a funtion and it's converge	
	2ND	State Dirichlet's condition for Fourier expansion of a funtion and it's convergence	
	3RD	Explain periodic function f(x) satisfying Dirichlet's conditio as a fourier series	
	4TH	Explain periodic function f(x) satisfying Dirichlet's conditio as a fourier series	
12TH	1ST	State Euler's formulae	
	2ND	State Euler's formulae	
	3RD	Define even and odd functions and find Fourier series in $(0 \le x \le 2\pi \text{ and } -\pi \le x \le \pi)$	
	4TH	Define even and odd functions and find Fourier series in $(0 \le x \le 2\pi \text{ and } -\pi \le x \le \pi)$	
13TH	1ST	Obtain F.S of continuous functions and functions having points of discontinuity	
	2ND	Obtain F.S of continuous functions and functions having points of discontinuity	
	3RD	UNIT:VI:-NUMERICAL METHODS: Appraise limitation of analytical methods of solution of Algebraic Equations.	
	4TH	Appraise limitation of analytical methods of solution of Algebraic Equations.	
14TH	1ST	Derive iterative formula for finding the solutions of algebric equations by:Newtor raphson method	
	2ND	Derive iterative formula for finding the solutions of algebric equations by:Newtor raphson method	
	3RD	Derive iterative formula for finding the solutions of algebric equations by:Newtor raphson method	
	4TH	Derive iterative formula for finding the solutions of algebric equations by:Bisection method	
15TH	1ST	Derive iterative formula for finding the solutions of algebric equations by:Bisection method	
	2ND	Derive iterative formula for finding the solutions of algebric equations by:Bisection method	
	3RD	UNIT:VII:FINITE DIFFERENCE AND INETRPOLATION: Explain finite difference and form table of forward and backword difference	
	4TH	Define shift operator and establish relation between shift operator and diffrence operator	

WEEK	CI ASS Davi			
TELK	CLASS DAY	TOPICS TO BE COVERED		
16ТН	1ST	Define shift operator and establish relation between shift operator and diffrence operator		
	2ND	Derive Newton's forward and backword interpolation formula for equal interval		
	3RD	Derive Newton's forward and backword interpolation formula for equal interval		
	4TH	Derive Newton's forward and backword interpolation formula for equal interval		
17TH	1ST	State langrange's interpolation formulae for unequal inetrvals		
	2ND	State langrange's interpolation formulae for unequal inetrvals		
	3RD	Explain numerical integration and state : Newton cote's formulae		
	4TH	Newton cote's formulae		
18TH	1ST	Trapezoidal Rule		
	2ND	Trapezoidal Rule		
	3RD	Simpson's 1/3 rd rule		
	4TH	Simpson's 1/3 rd rule		

SUHGN OF H.O.D

Bindequespa Cha, SIGN OF FACULTY