

NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha)

LESSON PLAN

SUBJECT: Th-2 (CIRCUIT & NETWORK THEORY)

Name Of The Faculty :- Er. DHARMAPADA OJHA

Branch :- ELECTRICAL ENGINEERING Semester :- 3RD

CHAPTER WISE DISTRIBUTION OF PERIODS

Sl.No.	Name of the chapter as per the Syllabus	No. of Periods as per the Syllabus	No. of periods actually needed
1	Magnetic Circuits	7	9
2	Coupled Circuits	5	8
3	Circuit Elements And Analysis	6	10
4	Network Theorems	8	11
5	Ac Circuit And Resonance	8	10
6	Poly-phase Circuit	6	8
7	Transients	6	6
8	Two-Port Network	8	6
9	Filter	6	4
	TOTAL	60	72

Sign of Faculty

Sign of H.O.D.

Discipline: ELECTRICAL &	Semester: 3rd	Name of the Teaching Faculty: Er. DHARMAPADA OJHA
ELECTRONICS ENGINEERING		SESSION-2024-25 EXAMINATION-2024(W)
Week	Class Day	Theory / Practical Topics
	1st	MAGNETIC CIRCUITS
1st		1.1 Introduction
	₂nd	1.2 Magnetizing force, Intensity, MMF, flux and their relations
	3rd	1.2 Magnetizing force, Intensity, MMF, flux and their relations
	₄th	1 . 3 Permeability, reluctance and permeance
	ıst	1 . 4 Analogy between electric and Magnetic Circuits
	₂nd	1 . 5 B-H Curve
2nd	3rd	1 . 7 Hysteresis loop
	₄th	1 . 6 Series & parallel magnetic circuit.
	ıst	1 . 6 Series & parallel magnetic circuit.
3 rd	2nd	COUPLED CIRCUITS:
	the add -	2 . 1 Self Inductance and Mutual Inductance
	3rd	2 . 2 Conductively coupled circuit and mutual impedance
	4th	2 . 3 Dot convention
	1st	2 . 3 Dot convention
	₂ nd	2 . 4 Coefficient of coupling
4th	3rd	2 . 5 Series and parallel connection of coupled inductors.
	4th	2 . 6 Solve numerical problems
	1st	2 . 6 Solve numerical problems
	₂ nd	CIRCUIT ELEMENTS AND ANALYSIS:
5th		3 . 1 Active, Passive, Unilateral & bilateral, Linear & Non linear elements
	3rd	3 . 2 Mesh Analysis, Mesh Equations by inspection
	4th	3 . 3 Super mesh Analysis
6 th	1st	3 . 3 Super mesh Analysis
	2nd	3 . 4 Nodal Analysis, Nodal Equations by inspection
	3rd	3 . 5 Super node Analysis.
	4th	3 . 6 Source Transformation Technique
	1st	3 . 7 Solve numerical problems (With Independent Sources Only)
	2nd	3 . 7 Solve numerical problems (With Independent Sources Only)
7th	, ₃ rd	3 . 7 Solve numerical problems (With Independent Sources Only)
	4th	NETWORK THEOREMS: 4.1 Star to delta and delta to star transformation

Week	Class Day	Theory / Practical Topics
8th	1st	4.2 Super position Theorem
	2nd	4.2 Super position Theorem
	₃ rd	4.3 Thevenin's Theorem
	4th	4.3 Thevenin's Theorem
	1st	4.4 Norton's Theorem
	2nd	4.5 Maximum power Transfer Theorem.
9th	3rd	4.5 Maximum power Transfer Theorem.
	4th	4.6 Solve numerical problems (With Independent Sources Only)
	1st	4.6 Solve numerical problems (With Independent Sources Only)
	2nd	4.6 Solve numerical problems (With Independent Sources Only)
	3rd	AC CIRCUIT AND RESONANCE:
10 th	314	5.1 A.C. through R-L, R-C & R-L-C Circuit
	4th	5.2 Solution of problems of A.C. through R-L, R-C & R-L-C series Circuit by
11 th	ıst	5.2 Solution of problems of A.C. through R-L, R-C & R-L-C series Circuit by
	₂nd	5.3 Solution of problems of A.C. through R-L, R-C & R-L-C parallel & Composite
	3rd	5.3 Solution of problems of A.C. through R-L, R-C & R-L-C parallel & Composite
	41-	5.4 Power factor & power triangle.
	4th	5.5 Deduce expression for active, reactive, apparent power
	1st	5.6 Derive the resonant frequency of series resonance and parallel resonance
424	₂ nd	5.7 Define Bandwidth, Selectivity & Q-factor in series circuit
12 th	3rd	5.8 Solve numerical problems
	4th	5.8 Solve numerical problems
	ıst	POLYPHASE CIRCUIT
		6.1 Concept of poly-phase system and phase sequence
13 th	₂ nd	6.2 Relation between phase and line quantities in star & delta connection
	3rd	6.3 Power equation in 3-phase balanced circuit.
	4th	6.4 Solve numerical problems
14 th	ıst	6.4 Solve numerical problems
	2nd	6.5 Measurement of 3-phase power by two wattmeter method.
	3rd	6.6 Solve numerical problems.
	4L	6.6 Solve numerical problems.
	₄th	6.6 Solve numerical problems.

eek	Class Day	Th
	ıst	Theory / Practical Topics TRANSIENTS:
		7.1 Steady at a c
	2nd	7.1 Steady state & transient state response.
15th	2110	1100/42/EI/12:
1 5(11	<u> </u>	7.1 Steady state & transient state response.
	3rd	7.2 Response to R-L, R-C & RLC circuit under DC condition.
	₄th	7.2 Response to R-L, R-C & RLC circuit under DC condition.
16 th	ıst	7.3 Solve numerical problems
	2nd	7.3 Solve numerical problems
	3rd	TWO PORT NETWORK
	314	TWO-PORT NETWORK:
		8.1 Open circuit impedance (z) parameters
	₄th	8.2 Short circuit admittance (y) parameters 8.3 Transmission (ABCD) parameters
	ıst	
	130	8.4 Hybrid (h) parameters.
	nd	8.5 Inter relationships of different parameters.
17 th	₂nd	8.5 Inter relationships of different parameters.
	3rd	8.6 T and π representation.
	₄th	8.7 Solve numerical problems
	1st	FILTERS:
		9.1 Define filter
		9.2 Classification of pass Band, stop Band and cut-off frequency.
	₂ nd	9.4 Constant – K low pass filter.
18 th		9.5 Constant – K high pass filter.
	3rd	9.6 Constant – K Band pass filter.
		9.7 Constant – K Band elimination filter.
	4th	9.8 Solve Numerical problems

Sign:Of Faculty

Sign. Of HOD