

LESSON PLAN

SUBJECT: TH-4 (THERMAL ENGINEERING I)

Name Of The Faculty :- Er. Bishnu Charan Jena

Branch: - Mechanical Engineering

Session: - 2024-25

Semester: - 3rd

Examination: 2024 (w)

CHAPTER WISE DISTRIBUTION OF PERIODS

Sl.No.	Name of the chapter as per the Syllabus	No. of Periods as per the Syllabus	No. of periods actually needed
• 1	Thermodynamic concept & Terminology	12	12
2	Laws of Thermodynamics	12	14
3	Properties Processes of perfect gas	10	12
4	Internal combustion engine	8	10
5	Air Standard Cycle	10	12
6	Fuels and Combustion	8	12
	Total Period	60	72

Bign of Faculty 20 106 /2024

Sign of H.O.D.

IMECHANICAL	Semester:	Name of the Teaching Faculty: Er.Bishnu Charan Jena		
	3rd	SESSION:2024-25	EXAMINATION:2024(W)	
Week	Class Day	Topics to be covered		
₁ st	1st	1.1 Thermodynamic Systems (closed,	open, isolated)	
	₂ nd	1.2 Thermodynamic properties of a system (pressure, volume, temperature, entropy		
	3rd	1.2 Thermodynamic properties of a system (pressure, volume, temperature, entropy		
	₄th	1.3 Intensive and extensive properties		
₂ nd	1st	1.4 Define thermodynamic processes, function.	path, cycle , state, path function, point	
	2nd	1.4 Define thermodynamic processes, path, cycle, state, path function, point function.		
	3rd	1.5 Thermodynamic Equilibrium.		
	4th	1.6 Quasi-static Process		
₃ rd	₁ st	1.7 Conceptual explanation of energy a	and its sources	
	₂ nd	1.8 Work , heat and comparison between the two.		
	3rd	1.9 Mechanical Equivalent of Heat		
	₄th	1.10Work transfer, Displacement work		
₄th	1st	2.1 State & explain Zeroth law of thermodynamics.		
	₂nd	2.1 State & explain Zeroth law of thermodynamics.		
	₃rd	2.2 State & explain First law of thermodynamics.		
	₄th	2.3 Limitations of First law of thermodynamics		
₅ th	1st	2.4Application of First law of Thermody application to turbine and compressor	ynamics (steady flow energy equation and its	
	₂nd	2.4Application of First law of Thermodynamics (steady flow energy equation and its application to turbine and compressor)		
	3rd	2.5 Second law of thermodynamics (Cla	aucius & Kelvin Plank statements)	
	₄th	2.5 Second law of thermodynamics (Cla	aucius & Kelvin Plank statements)	
₆ th	1st	2.5 Second law of thermodynamics (Cla	aucius & Kelvin Plank statements)	
		2.6 Application of second law in heat e determination of efficiencies & C.O.P (s		
	3rd	2.6 Application of second law in heat e determination of efficiencies & C.O.P (s	ngine, heat pump, refrigerator &	
	4th	2.6 Application of second law in heat endetermination of efficiencies & C.O.P (s	ngine, heat pump, refrigerator &	

N

Week	Class Day	Topics to be covered		
₇ th	ıst	2.6 Application of second law in heat engine, heat pump, refrigerator & determination of efficiencies & C.O.P (solve simple numerical)		
	₂ nd	2.6 Application of second law in heat engine, heat pump, refrigerator & determination of efficiencies & C.O.P (solve simple numerical)		
	3rd	3.1 Laws of perfect gas: Boyle's law, Charle's law, Avogadro's law, Dalton's law of partial		
	₄ th	3.2 Explain specific heat of gas (Cp and Cv)		
₈ th	ıst	3.2 Explain specific heat of gas (Cp and Cv)		
	₂ nd	3.3 Relation between Cp & Cv.		
	3rd	3.4 Enthalpy of a gas.		
	₄th	3.5 Work done during a non- flow process.		
	1st	3.5 Work done during a non- flow process.		
	₂ nd	3.6 Application of first law of thermodynamics to various non flow process(Isothermal,Isobaric, Isentropic and polytrophic process)		
₉ th	3rd	3.6 Application of first law of thermodynamics to various non flow process(Isothermal,Isobaric, Isentropic and polytrophic process)		
	4th	3.6 Solve simple problems on above.		
₁₀ th	1st	3.6 Solve simple problems on above.		
	₂ nd	3.7 Free expansion & throttling process.		
	3rd	4.Internal combustion engine		
	4th	4.1 Explain & classify I.C engine.		
₁₁ th	ıst	4.2 Terminology of I.C Engine such as bore, dead centers, stroke volume, piston speed &RPM.		
	₂nd	4.2 Terminology of I.C Engine such as bore, dead centers, stroke volume, piston speed &RPM.		
	3rd	4.3 Explain the working principle of 2-stroke & 4- stroke engine C.I & S.I engine.		
	4th	4.3 Explain the working principle of 2-stroke & 4- stroke engine C.I & S.I engine.		
₁₂ th	ıst	4.3 Explain the working principle of 2-stroke & 4- stroke engine C.I & S.I engine.		
	₂nd	4.4 Differentiate between 2-stroke & 4- stroke engine C.I & S.I engine.		
	3rd	4.4 Differentiate between 2-stroke & 4- stroke engine C.I & S.I engine.		
	4th	4.4 Differentiate between 2-stroke & 4- stroke engine C.I & S.I engine.		
₁₃ th	1st	INTERNAL ASSESMENT		
	2nd	INTERNAL ASSESMENT		
	3rd	5.1 Carnot cycle		

Week	Class Day	Topics to be covered	
13th	4th	5.1 Carnot cycle	
1	1st	5.1 Carnot cycle	
44	₂ nd	5.2 Otto cycle.	
14th	3rd	5.2 Otto cycle.	
	₄th	5.2 Otto cycle.	
[1st	5.3 Diesel cycle.	
₁₅ th	₂ nd	5.3 Diesel cycle.	
	3rd	5.3 Diesel cycle.	
	4th	5.4 Dual cycle.	
	1st	5.5 Solve simple numerical.	
₁₆ th	₂ nd	5.5 Solve simple numerical.	
927	3rd	6.1 Define Fuel.	
	₄th	6.2 Types of fuel.	
	1st	6.3 Application of different types of fuel.	
₁₇ th	₂nd	6.4 Heating values of fuel.	
1,	3rd	6.4 Heating values of fuel.	
	₄th	6.5 Quality of I.C engine fuels Octane number, Cetane number.	
1.2	1st	6.5 Quality of I.C engine fuels Octane number, Cetane number.	
₁₈ th	₂ nd	6.5 Quality of I.C engine fuels Octane number, Cetane number.	
10	3rd	Revision	
	₄ th	Revision	

Sign of Faculty 24

Sight Of H.O.D. 72/1 66/24