NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha) ## **LESSON PLAN** **SUBJECT: AUTOMOBILE COMPONENT DESIGN (TH-5)** Name Of The Faculty:- Er. Subhabrata Mohapatra **Branch**:- Automobile Engineering Semester:- 5th Academic Year: 2025-26 Examination: - 2025 (w) ## **CHAPTER WISE DISTRIBUTION OF PERIODS** | SI.No. | Name of the chapter as per the Syllabus | No. of Periods
as per the
Syllabus | No. of periods
actually
needed | |--------|---|--|--------------------------------------| | 1 | BASIC CONCEPET OF DESIGN | 12 | 14 | | 2 | DESIGN OF MACHINE ELEMENT | 6 | 9 | | 3 | DESIGN OF SHAFT KEY & COMPONENT | 10 | 13 | | 4 | DESIGN OF LEVERS | 6 | 8 | | 5 | DESIGNOF CHASSIS | 10 | 13 | | 6 | DESIGN OF ENGINE COMPONENT | 16 | 18 | | | Total Period: | 60 | 75 | S. Mohapatra [b/07/25 sign of the faculty 8 24/2/01/2025 Sign of H.O.D | Name of the programme: Diploma in AUTOMOBILE ENGINEERING | Semester:
5th | Name of the Teaching Faculty: Er. Subhabrata Mohapatra | | | |--|-------------------------|--|----------------------------------|--| | | | Academic Year: 2025-26 Examination: 2025 (W) | | | | Course
Code:
TH.5 | Course Year: Third Year | No. of Classes Alloted Per Week : | 5 | | | | | Planned Classes Required to Complete the Course | 75 | | | Week | Class Day | Topics to be Covered | | | | 1 st | 1 st | Basic concepts of design | | | | | 2 nd | Introduction to design | | | | | 3 rd | Introduction to design | | | | | 4 th | Classification of design | | | | | 5 th | Stress analysis | | | | | 1 st | Types of external loads | | | | | 2 nd | Types of induced stresses: tensile, compressive, shear crushing & bearing | | | | 2 nd | 3 rd | bending, torsion, thermal stresses, creep, proof stresses resilience principal stresses. | | | | | 4 th | Stress- strain diagram for ductile & brittle material and its importa | ance | | | | 5 th | bending, torsion, thermal stresses, creep, proof stresses resilience principal stresses. | | | | | 1 st | Variable stresses machine parts, fatigue & endurance limit, stress-time diagrams for variable stresses. | | | | | 2 nd | Working stresses for static load, variable or fatigue load | | | | 3 rd | 3 rd | Factor of safety, selection of factor of safety | | | | | 4 th | Introduction to theories of failure-maximum principal theory. Maximum shear stress theory, Distribution energy theory | | | | | 5 th | Selection of material and justifications of automobile components, advanced materials for automotive components | | | | | 1 st | .Concept of standardization, preferred numbers & inter chargeab | ility in design practice. | | | 4 th | 2 nd | Common types of fasteners with their applications-through bolts, tap bolts, top bolts, studies cap screws and machine screws | | | | | 3 rd | Bearings – classification, location in automobiles systems & select | ion of bearings. | | | | 4 th | Post design aspects ergonomic aspect aesthetic consideration (sh automobile. | ape, colour, surface finish) for | | | | 5 th | Post design aspects ergonomic aspect aesthetic consideration (shape, colour, surface finish) for automobile. | | | | | 1 st | Post design aspects ergonomic aspect aesthetic consideration (sh automobile. | ape, colour, surface finish) for | | | 5 th | 2 nd | Design of machine elements. | | | | | 3 rd | Design of socket & spigot type cotter joint | | | | Week | Class Day | Topics to be Covered | | |-------------------------|------------------------|--|--| | 5 th | 4 th | Design of socket & spigot type cotter joint | | | | 5 th | Design of socket & spigot type cotter joint | | | 6 th | 1 st | Design of knuckle joint | | | | 2 nd | Design of knuckle joint | | | | 3 rd | Design of knuckle joint | | | | 4 th | Design of turnbuckle | | | | 5 th | Design of turnbuckle | | | | 1 st | Application of above machine elements in an automobile. | | | | 2 nd | Application of above machine elements in an automobile. | | | 7 th | 3 rd | Design of shafts, keys &couplings | | | | 4 th | Design of shaft for torsion, rigidity, bending, combined bending &torsion | | | | 5 th | Design of shaft for torsion, rigidity, bending, combined bending &torsion | | | | 1 st | Compression of solid & hollow shafts | | | | 2 nd | Compression of solid & hollow shafts | | | 8 th | 3 rd | Types of keys design of sunk rectangular key, woodruff key. Effect of keyways on shaft | | | | 4 th | Types of keys design of sunk rectangular key, woodruff key. Effect of keyways on shaft | | | | 5 th | Types of keys design of sunk rectangular key, woodruff key. Effect of keyways on shaft | | | | 1 st | Design of coupling-muff, flange and bush pin type flexible | | | | 2 nd | Design of coupling-muff, flange and bush pin type flexible | | | 9 th | 3 rd | Design of coupling-muff, flange and bush pin type flexible | | | | 4 th | Design of levers. | | | | 5 th | Design of levers. | | | | 1 st | Rocker arm | | | 10 th | 2 nd | Hand lever | | | | 3 rd | Pedals for rectangular cross-section& fulcrum Pinonly | | | | 4 th | Design of chassis component | | | | 5 th | Design of chassis component | | | 11 th | 1 st | Design of cloth- single plate & multi plate | | | | 2 nd | Design of cloth- single plate & multi plate | | | Week | Class Day | Topics to be Covered | |-------------------------|-----------------|---| | 11 th | 3 rd | Teeth calculation of gears for sliding mesh/constant mesh gear box of given data. | | | 4 th | Design of semi elliptical leaf spring, helical spring-torsion &compression | | | 5 th | Design of semi elliptical leaf spring, helical spring-torsion &compression | | 12 th | 1 st | Data of engine specifications & calculation of cylinder dimensions for given | | | 2 nd | Data of engine specifications & calculation of cylinder dimensions for given | | | 3 rd | Design of cylinder head thickness &bolts | | | 4 th | Design of cylinder head thickness &bolts | | | 5 th | Design of valve seat & valve lift | | | 1 st | Design of valve seat & valve lift | | 13 th | 2 nd | Design of piston crown by bending strength & thermal considerations | | | 3 rd | Design of piston crown by bending strength & thermal considerations | | | 4 th | Design of piston rings & skirt length | | | 5 th | Design of piston rings & skirt length | | | 1 st | bending & shear considerations. | | 14 th | 2 nd | bending & shear considerations. | | | 3 rd | bending & shear considerations. | | | 4 th | Design of connecting rod cross-section(I-section) | | | 5 th | Design of connecting rod cross-section(I-section) | | 15 th | 1 st | Design of connecting rod cross-section(I-section) | | | 2 nd | Design of big end, cap &bolt. | | | 3 rd | Design of big end, cap &bolt. | | | 4 th | Design of over hung crankshaft. | | | 5 th | Design of over hung crankshaft. | 8 34/2/01/2005 sign of the faculty Sign of H.O.D