

NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha)

LESSON PLAN

SUBJECT: AUTOMOBILE COMPONENT DESIGN (TH-5)

Name Of The Faculty:- Er. Subhabrata Mohapatra

Branch:- Automobile Engineering Semester:- 5th

Academic Year: 2025-26 Examination: - 2025 (w)

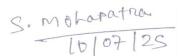
CHAPTER WISE DISTRIBUTION OF PERIODS

SI.No.	Name of the chapter as per the Syllabus	No. of Periods as per the Syllabus	No. of periods actually needed
1	BASIC CONCEPET OF DESIGN	12	14
2	DESIGN OF MACHINE ELEMENT	6	9
3	DESIGN OF SHAFT KEY & COMPONENT	10	13
4	DESIGN OF LEVERS	6	8
5	DESIGNOF CHASSIS	10	13
6	DESIGN OF ENGINE COMPONENT	16	18
	Total Period:	60	75

S. Mohapatra

[b/07/25

sign of the faculty


8 24/2/01/2025

Sign of H.O.D

Name of the programme: Diploma in AUTOMOBILE ENGINEERING	Semester: 5th	Name of the Teaching Faculty: Er. Subhabrata Mohapatra		
		Academic Year: 2025-26 Examination: 2025 (W)		
Course Code: TH.5	Course Year: Third Year	No. of Classes Alloted Per Week :	5	
		Planned Classes Required to Complete the Course	75	
Week	Class Day	Topics to be Covered		
1 st	1 st	Basic concepts of design		
	2 nd	Introduction to design		
	3 rd	Introduction to design		
	4 th	Classification of design		
	5 th	Stress analysis		
	1 st	Types of external loads		
	2 nd	Types of induced stresses: tensile, compressive, shear crushing & bearing		
2 nd	3 rd	bending, torsion, thermal stresses, creep, proof stresses resilience principal stresses.		
	4 th	Stress- strain diagram for ductile & brittle material and its importa	ance	
	5 th	bending, torsion, thermal stresses, creep, proof stresses resilience principal stresses.		
	1 st	Variable stresses machine parts, fatigue & endurance limit, stress-time diagrams for variable stresses.		
	2 nd	Working stresses for static load, variable or fatigue load		
3 rd	3 rd	Factor of safety, selection of factor of safety		
	4 th	Introduction to theories of failure-maximum principal theory. Maximum shear stress theory, Distribution energy theory		
	5 th	Selection of material and justifications of automobile components, advanced materials for automotive components		
	1 st	.Concept of standardization, preferred numbers & inter chargeab	ility in design practice.	
4 th	2 nd	Common types of fasteners with their applications-through bolts, tap bolts, top bolts, studies cap screws and machine screws		
	3 rd	Bearings – classification, location in automobiles systems & select	ion of bearings.	
	4 th	Post design aspects ergonomic aspect aesthetic consideration (sh automobile.	ape, colour, surface finish) for	
	5 th	Post design aspects ergonomic aspect aesthetic consideration (shape, colour, surface finish) for automobile.		
	1 st	Post design aspects ergonomic aspect aesthetic consideration (sh automobile.	ape, colour, surface finish) for	
5 th	2 nd	Design of machine elements.		
	3 rd	Design of socket & spigot type cotter joint		

Week	Class Day	Topics to be Covered	
5 th	4 th	Design of socket & spigot type cotter joint	
	5 th	Design of socket & spigot type cotter joint	
6 th	1 st	Design of knuckle joint	
	2 nd	Design of knuckle joint	
	3 rd	Design of knuckle joint	
	4 th	Design of turnbuckle	
	5 th	Design of turnbuckle	
	1 st	Application of above machine elements in an automobile.	
	2 nd	Application of above machine elements in an automobile.	
7 th	3 rd	Design of shafts, keys &couplings	
	4 th	Design of shaft for torsion, rigidity, bending, combined bending &torsion	
	5 th	Design of shaft for torsion, rigidity, bending, combined bending &torsion	
	1 st	Compression of solid & hollow shafts	
	2 nd	Compression of solid & hollow shafts	
8 th	3 rd	Types of keys design of sunk rectangular key, woodruff key. Effect of keyways on shaft	
	4 th	Types of keys design of sunk rectangular key, woodruff key. Effect of keyways on shaft	
	5 th	Types of keys design of sunk rectangular key, woodruff key. Effect of keyways on shaft	
	1 st	Design of coupling-muff, flange and bush pin type flexible	
	2 nd	Design of coupling-muff, flange and bush pin type flexible	
9 th	3 rd	Design of coupling-muff, flange and bush pin type flexible	
	4 th	Design of levers.	
	5 th	Design of levers.	
	1 st	Rocker arm	
10 th	2 nd	Hand lever	
	3 rd	Pedals for rectangular cross-section& fulcrum Pinonly	
	4 th	Design of chassis component	
	5 th	Design of chassis component	
11 th	1 st	Design of cloth- single plate & multi plate	
	2 nd	Design of cloth- single plate & multi plate	

Week	Class Day	Topics to be Covered
11 th	3 rd	Teeth calculation of gears for sliding mesh/constant mesh gear box of given data.
	4 th	Design of semi elliptical leaf spring, helical spring-torsion &compression
	5 th	Design of semi elliptical leaf spring, helical spring-torsion &compression
12 th	1 st	Data of engine specifications & calculation of cylinder dimensions for given
	2 nd	Data of engine specifications & calculation of cylinder dimensions for given
	3 rd	Design of cylinder head thickness &bolts
	4 th	Design of cylinder head thickness &bolts
	5 th	Design of valve seat & valve lift
	1 st	Design of valve seat & valve lift
13 th	2 nd	Design of piston crown by bending strength & thermal considerations
	3 rd	Design of piston crown by bending strength & thermal considerations
	4 th	Design of piston rings & skirt length
	5 th	Design of piston rings & skirt length
	1 st	bending & shear considerations.
14 th	2 nd	bending & shear considerations.
	3 rd	bending & shear considerations.
	4 th	Design of connecting rod cross-section(I-section)
	5 th	Design of connecting rod cross-section(I-section)
15 th	1 st	Design of connecting rod cross-section(I-section)
	2 nd	Design of big end, cap &bolt.
	3 rd	Design of big end, cap &bolt.
	4 th	Design of over hung crankshaft.
	5 th	Design of over hung crankshaft.

8 34/2/01/2005

sign of the faculty

Sign of H.O.D