

NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha)

LESSON PLAN

SUBJECT: TH-2(ENERGY CONVERSION-II)

Name Of The Faculty:- Er. Shraddha Priyadarshini

Branch :- Electrical Engineering Semester :- 5th

Academic Year: 2025-26 Examination: - 2025 (W)

CHAPTER WISE DISTRIBUTION OF PERIODS

SI.No.	Name of the chapter as per the Syllabus	No. of Periods as per the Syllabus	No. of periods actually needed
1	Alternator (Synchronous Generator)	14	14
2	Synchronous Motor	8	8
3	Induction motor	14	14
4	Single Phase induction motor	8	8
5	Commutator motors	6	6
6	Special Electric Machine	5	5
7	Three phase transformers	5	5
Total Period:			60

Shrachha Sign of Faculty

Sign of H.O.D.

Name of the programme: Diploma in Electrical Engineering	Semester: 5th	Name of the Teaching Faculty: Er. Shraddha Priyadarshini		
		Academic Year: 2025-26 Examination: 2025 (W		
Course Code: TH-2	Course Year: 3rd Year	No. of Classes Alloted Per Week :	4	
		Planned Classes Required to Complete the Course	60	
Week	Class Day	Topics to be Covered		
1 st	1 st	1. ALTERNATOR:图.1. Types of alternator and their constructional features		
	2 nd	1.2. Basic working principle of alternator and the relation between speed and frequency.		
	3 rd	1.2. Basic working principle of alternator and the relation between speed and frequency.		
	4 th	1.3. Terminology in armature winding and expressions for winding factors (Pitch factor, Distribution factor).		
	1 st	1.4. Explain harmonics, its causes and impact on winding factor		
2 nd	2 nd	1.4. Explain harmonics, its causes and impact on winding factor		
2	3 rd	1.5. E.M.F equation of alternator. (Solve numerical problems).		
	4 th	1.6. Explain Armature reaction and its effect on emf at different power factor of load.		
3 rd	1 st	1.6. Explain Armature reaction and its effect on emf at different power factor of load.		
	2 nd	1.7. The vector diagram of loaded alternator. (Solve numerical	problems)	
	3 rd	1.8. Testing of alternator (Solve numerical problems)1.8.1. Open circuit test.		
	4 th	1.8.2. Short circuit test.		
	1 st	1.9. Determination of voltage regulation of Alternator by direct synchronous impedance method. (Solve numerical problems)	loading and	
4 th	2 nd	1.10. Parallel operation of alternator using synchro-scope and omethod.	dark & bright lamp	
	3 rd	1.11. Explain distribution of load by parallel connected alternat	ors.	
	4 th	1.11. Explain distribution of load by parallel connected alternators.		
5 th	1 st	SYNCHRONOUS MOTOR: 2.1. Constructional feature of Synchronous Motor		
	2 nd	2.2. Principles of operation, concept of load angle		
	3 rd	2.3. Derive torque, power developed.		
	4 th	2.4. Effect of varying load with constant excitation. of varying excitation with constant load.	2.5. Effect	

Week	Class Day	Topics to be Covered		
6 th	1 st	2.6. Power angle characteristics of cylindrical rotor motor.		
	2 nd	2.7. Explain effect of excitation on Armature current and power factor.		
	3 rd	2.8. Hunting in Synchronous Motor.		
	4 th	2.9. Function of Damper Bars in synchronous motor and generator.		
7 th	1 st	2.10. Describe method of starting of Synchronous motor.		
	2 nd	2.11. State application of synchronous motor.		
	3 rd	THREE PHASE INDUCTION MOTOR: 3.1. Production of rotating magnetic field.		
	4 th	3.2. Constructional feature of Squirrel cage and Slip ring induction motors		
8 th	1 st	3.3. Working principles of operation of 3-phase Induction motor.		
	2 nd	3.4. Define slip speed, slip and establish the relation of slip with rotor quantities.		
	3 rd	3.5. Derive expression for torque during starting and running conditions and derive conditions for maximum torque. (solve numerical problems)		
	4 th	3.6. Torque-slip characteristics		
9 th	1 st	3.7. Derive relation between full load torque and starting torque etc. (solve numerical problems)		
	2 nd	3.8. Establish the relations between Rotor Copper loss, Rotor output and Gross Torque and relationship of slip with rotor copper loss. (solve numerical problems)		
	3 rd	3.8. Establish the relations between Rotor Copper loss, Rotor output and Gross Torque and relationship of slip with rotor copper loss. (solve numerical problems)		
	4 th	3.9. Methods of starting and different types of starters used for three phase Induction motor.		
10 th	1 st	changing, frequency control methods.		
	2 nd	3.11. Plugging as applicable to three phase induction motor		
	3 rd	3.12. Describe different types of motor enclosures . 3.13. Explain principle of Induction Generator and state its applications.		
	4 th	SINGLE PHASE INDUCTION MOTOR: 4.1. Explain Ferrari's principle		
11 th	1 st	4.2. Explain double revolving field theory and Cross-field theory to analyze starting torque of 1-phase induction motor.		
	2 nd	characteristics and application of following single phase motors.		
	3 rd	4.3.1. Split phase motor		

Week	Class Day	Topics to be Covered	
11 th	4 th	4.3.2. Capacitor Start motor. 4.3.3. Capacitor start, capacitor run motor	
12 th	1 st	4.4. Explain the method to change the direction of rotation of above motors.	
	2 nd	5.1. Construction, working principle, running characteristic and application of single phase series motor.	
	3 rd	5.1. Construction, working principle, running characteristic and application of single phase series motor.	
	4 th	5.2. Construction, working principle and application of Universal motors.	
13 th	1 st	5.2. Construction, working principle and application of Universal motors.	
	2 nd	5.3. Working principle of Repulsion start Motor, Repulsion start Induction run motor, Repulsion Induction motor.	
	3 rd	5.3. Working principle of Repulsion start Motor, Repulsion start Induction run motor, Repulsion Induction motor.	
	4 th	6. SPECIAL ELECTRICAL MACHINE: 6.1. Principle of Stepper motor. 6.2. Classification of Stepper motor.	
14 th	1 st	6.3. Principle of variable reluctant stepper motor. 6.6. Applications of Stepper motor.	
	2 nd	THREE PHASE TRANSFORMERS: 7.1. Explain Grouping of winding, Advantages.	
	3 rd	7.2. Explain parallel operation of the three phase transformers.	
	4 th	7.2. Explain parallel operation of the three phase transformers.	
15 th	1 st	7.3. Explain tap changer (On/Off load tap changing)	
	2 nd	7.3. Explain tap changer (On/Off load tap changing)	
	3 rd	7.4. Maintenance Schedule of Power Transformers.	
	4 th	7.4. Maintenance Schedule of Power Transformers.	

Sign of Faculty

Sign of H.O.D.