

NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA)

(Approved by AICTE& affiliated to SCTE&VT, Odisha)

LESSON PLAN

SUBJECT: TH-5 (RENEWABLE ENERGY POWER PLANTS)

Name Of The Faculty :- Er. RANJAN KUMAR PADHI

Branch:- Electrical Engineering **Semester**:- 3RD **Session**:-2025-26 **Examination**:-2025 (W)

CHAPTER WISE DISTRIBUTION OF PERIODS

SI.No.	Name of the chapter as per the Syllabus	No. of Periods as per the Syllabus	No. of periods actually needed
1	Solar PV and Concentrated Solar Power Plants	12	17
2	Large Wind Power Plants	12	18
3	Small Wind Turbines	9	13
4	Biomass-based Power Plants	12	20
	TOTAL	45	60

Sign of Faculty

Sign of H.O.D.

Name of the programme: ELECTRICAL ENGINEERING	Semester: 3rd	Name of the Teaching Faculty: Er. RANJAN KUMAR PADHI			
		Academic Year: 2025-26 Examin	nation: 2025 (W)		
Course	Course	No. of Classes Alloted Per Week:	4		
Code: EEPC209 TH:5	Year: Second Year	Planned Classes Required to Complete the Course	60		
Week	Class Day	Topics to be Covered			
	ıst	Solar PV and Concentrated Solar Power Plants Solar Map of India: Global solar power radiation, Solar PV			
	₂ nd	1.1 Solar Map of India: Global solar power radiation, Solar PV			
₁ st	3rd	1.2 Concentrated Solar Power (CSP) plants, construction and working of: Power Tower, Parabolic Trough, Parabolic Dish, Fresnel Reflectors			
	4th	Power Tower, Parabolic Trough, Parabolic Dish, Fresnel Reflectors			
	1st	Power Tower, Parabolic Trough, Parabolic Dish, Fresnel Reflectors			
,	₂ nd	Power Tower, Parabolic Trough, Parabolic Dish, Fresnel Reflectors			
₂ nd	3rd	1.3 Solar Photovoltaic (PV) power plant: components layout, construction, working. Roof top solar PV power system			
	₄ th	components layout, construction, working. Roof top solar PV power system			
	₁ st	components layout, construction, working. Roof top solar PV power system			
	₂ nd	components layout, construction, working. Roof top solar PV power system			
₃ rd	3rd	components layout, construction, working. Roof top solar PV power system			
	4th	components layout, construction, working. Roof top solar PV power system			
	₁ st	components layout, construction, working. Roof top solar PV power system			
₄th	₂ nd	components layout, construction, working. Roof top solar PV power system			
	₃rd	Large Wind Power Plants Wind Map of India: Wind power density in watts per principle; long path theory	2.1 square meter Lift and drag		

г

Week	Class Day	Topics to be Covered			
₄ th	₄ th	Wind power density in watts per square meter Lift and drag principle; long path theory			
₅ th	₁ st	Wind power density in watts per square meter Lift and drag principle; long pat theory			
	₂ nd	Wind power density in watts per square meter Lift and drag principle; long path theory			
	3rd	2.2 Geared type wind power plants: components, layout and working.			
	₄ th	2.2 Geared type wind power plants: components, layout and working.			
₆ th	₁ st	Direct drive type wind power plants: components, layout and working.			
	₂ nd	Direct drive type wind power plants: components, layout and working.			
	3rd	Direct drive type wind power plants: components, layout and working.			
	₄ th	2.3 Constant Speed Electric Generators: Squirrel Cage Induction Generators(SCIG),			
₇ th	₁ st	2.3 Constant Speed Electric Generators: Squirrel Cage Induction Generators(SCIG),			
	₂ nd	2.4 Wound Rotor Induction Generator (WRIG); Variable Speed Electric Generators: Doubly-fed induction generator (DFIG), wound rotor synchronous generator (WRSG),			
	3rd	2.4 Wound Rotor Induction Generator (WRIG); Variable Speed Electric Generators: Doubly-fed induction generator (DFIG), wound rotor synchronous generator (WRSG),			
	4th	2.4 Wound Rotor Induction Generator (WRIG); Variable Speed Electric Generators: Doubly-fed induction generator (DFIG), wound rotor synchronous generator (WRSG),			
8th	₁ st	permanent magnet synchronous generator (PMSG). Small Wind Turbines 3.1 Horizon axis small wind turbine: direct drive type, components and working Horizontal axis small wind			
	2 nd	3.1 Horizon axis small wind turbine: direct drive type, components and working Horizontal axis small wind turbine: geared type, components and working			
	3rd	3.1 Horizon axis small wind turbine: direct drive type, components and working Horizontal axis small wind turbine: geared type, components and working			
	₄ th	3.2 Vertical axis small wind turbine: direct drive and geared, components and Working Types of towers and installation of small wind turbines on rooftops and			
9 th	₁ st	3.2 Vertical axis small wind turbine: direct drive and geared, components and Working Types of towers and installation of small wind turbines on rooftops and open fields.			
	₂ nd	3.2 Vertical axis small wind turbine: direct drive and geared, components and Working Types of towers and installation of small wind turbines on rooftops and open fields.			
	3rd	3.2 Vertical axis small wind turbine: direct drive and geared, components and Working Types of towers and installation of small wind turbines on rooftops and open fields.			

Week	Class Day	Topics to be Covered 3.2 Vertical axis small wind turbine: direct drive and geared, components and Working Types of towers and installation of small wind turbines on rooftops and			
9th	4th				
₁₀ th	1st	3.2 Vertical axis small wind turbine: direct drive and geared, components and Working Types of towers and installation of small wind turbines on rooftops and			
	₂ nd	3.3 Electric generators used in small wind power plants			
	3rd	3.3 Electric generators used in small wind power plants			
	₄ th	3.3 Electric generators used in small wind power plants			
₁₁ th	₁ st	Biomass-based Power Plants 4.1 Properties of solid fuel for biomass power plants: bagasse, wood			
	₂ nd	4.1 Properties of solid fuel for biomass power plants: bagasse, wood chips, rice husk, municipal waste			
	₃ rd	4.1 Properties of solid fuel for biomass power plants: bagasse, wood chips, rice husk, municipal waste			
	4th	4.1 Properties of solid fuel for biomass power plants: bagasse, wood chips, rice husk, municipal waste			
₁₂ th	1st	4.1 Properties of solid fuel for biomass power plants: bagasse, wood chips, rice husk, municipal waste			
	₂ nd	4.2 Properties of liquid and gaseous fuel for bio mass power plants: Jatropha, bio- diesel gobar gas			
	3rd	4.2 Properties of liquid and gaseous fuel for bio mass power plants: Jatropha, bio- diesel gobar gas			
	₄ th	4.2 Properties of liquid and gaseous fuel for bio mass power plants: Jatropha, bio-diesel gobar gas			
₁₃ th	1st	4.3 Layout of a Bio-chemical based (e.g. biogas) power plant:			
	₂ nd	4.3 Layout of a Bio-chemical based (e.g. biogas) power plant:			
	₃ rd	4.3 Layout of a Bio-chemical based (e.g. biogas) power plant:			
	4th	4.3 Layout of a Bio-chemical based (e.g. biogas) power plant:			
₁₄ th	1st	4.3 Layout of a Bio-chemical based (e.g. biogas) power plant:			
	2nd	4.4 Layout of a Thermo-chemical based (e.g. Municipal waste) power plant			
	3rd	4.4 Layout of a Thermo-chemical based (e.g. Municipal waste) power plant			

Week	Class Day	Topics to be Covered		
₁₄ th	4th	4.4 Layout of a Thermo-chemical based (e.g. Municipal waste) power plant		
	₁ st	4.5 Layout of a Agro-chemical based (e.g.bio-diesel) power plant		
₁₅ th	₂ nd	4.5 Layout of a Agro-chemical based (e.g.bio-diesel) power plant		
	3rd	4.5 Layout of a Agro-chemical based (e.g.bio-diesel) power plant		
	₄ th	4.5 Layout of a Agro-chemical based (e.g.bio-diesel) power plant		

10.7.25

Sign of Faculty

Sign of H.O.D.