

NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA)

(Approved by AICTE& affiliated to SCTE&VT, Odisha)

LESSON PLAN

TH:2- INTRODUCTION TO POWER GENERATION SYSTEMS

Name Of The Faculty:-Er. Prakash Kumar Mohanty

Branch :- Electrical & Electronic Engineering Semester :- 3RD Session :-2025-26 Examination :-2025 (W)

CHAPTER WISE DISTRIBUTION OF PERIODS

SI.No.	Name of the chapter as per the Syllabus	No. of Periods as per the Syllabus	No. of periods actually needed
1	Thermal Power Plants: Coal, Gas/Diesel and Nuclear-based	10	12
2	Large and Micro-Hydropower Plants	9	13
3	Solar and Biomass based Power Plants	9	12
4	Wind Power Plants	9	13
5	Economics of Power Generation and Interconnected Power System	8	10
TOTAL			60

Sign of Faculty

Sign of H.O.D.

Name of the programme:	Semester:	Name of the Teaching Faculty: Er.Prakash Kumar Mohanty		
Diploma in Electrical & Electronics Engineering	3rd	Academic Year: 2025-26 Examination: 2025 (W)		
Course Code: EEEPC203/ TH:2	Course Year: 2ND Year	No. of Classes Alloted Per Week :	4	
		Planned Classes Required to Complete the Course	60	
Week	Class Day	Topics to be Covered		
1st	₁ st	Thermal Power Plants: Coal, Gas/Diesel and Nuclear-based 1.1 Layout and working of a typical thermal power plant with steam turbines and electric generators		
	₂ nd	1.1 Layout and working of a typical thermal power plant with steam turbines and electric generators		
	₃ rd	1.2 Properties of conventional fuels used in the energy conversion equipment used in thermal power plants: Coal, Gas, Diesel, Nuclear fuels-fusion and fission action		
	₄ th	1.2 Properties of conventional fuels used in the used in thermal power plants: Coal, Gas, Diese fission action	• • • • • • • • • • • • • • • • • • • •	
₂nd	1st	1.3 Safe Practices and working of various thermal power plants: coal-based, gas- based, diesel-based, and nuclear-based		
	₂ nd	1.3 Safe Practices and working of various thern gas- based, diesel-based, and nuclear-based	nal power plants: coal-based,	
	3rd	1.4 Functions of the following types of thermal auxiliaries	power plants and their major	
	4th	1.4 Functions of the following types of thermal power plants and their major auxiliaries		
	1st	1.4.1 Coal fired boilers: fire tube and water tub	pe	
	₂ nd	1.4.1 Coal fired boilers: fire tube and water tube		
3rd	₃rd	1.4.2 Gas/diesel based combustion engines		
	₄th	1.4.3 Types of nuclear reactors :Disposal of nuclear shielding	clear waste and nuclear	
₄th	1st	Large and Micro-Hydropower Plants Energy conversion process of hydro power plan	2.1 nt	
	₂ nd	2.2 Classification of hydro power plant: High ,n	nedium and low head	
	3rd	2.3 Construction and working of hydro turbine hydro power plant	s used in different types of	

week	Class Day	Topics to be Covered
₄ th	₄th	2.3 Construction and working of hydro turbines used in different types of hydro power plant
₅th	₁st	2.3.1 High head-Pelton turbine
	₂ nd	2.3.2 Medium head-Francis turbine
	3rd	2.3.3 Low head-Kaplan turbine
	₄th	2.4 Safe Practices for hydro power plants
₆ th	1st	2.5 Different types of micro-hydro turbines for different heads: Pelton, Francis and Kaplan turbines
	₂ nd	2.5 Different types of micro-hydro turbines for different heads: Pelton, Francis and Kaplan turbines
	3rd	2.5 Different types of micro-hydro turbines for different heads: Pelton, Francis and Kaplan turbines
	₄th	2.6 Locations of these different types of large and micro-hydro power plants in India
₇ th	1st	2.6 Locations of these different types of large and micro-hydro power plants in India
	₂ nd	Solar and Biomass based Power Plants Solar Map of India: Global solar power radiation 3.1
	3rd	3.1 Solar Map of India: Global solar power radiation
	4th	3.2 Solar Power Technology
8th	1st	3.2.1 Concentrated Solar Power (CSP) plants, construction and working of: Power Tower, Parabolic Trough, Parabolic Dish, Fresnel Reflectors
	₂ nd	3.2.1 Concentrated Solar Power (CSP) plants, construction and working of: Power Tower, Parabolic Trough, Parabolic Dish, Fresnel Reflectors
	3rd	3.2.2 Solar Photovoltaic (PV) power plant: layout, construction, working
	₄ th	3.3 Biomass-based Power Plants
₉ th	1st	3.3.1 Layout of a Bio-chemical based (e.g. biogas) power plant
	₂ nd	3.3.2 Layout of a Thermo-chemical based (e.g. Municipal waste) power plant
	3rd	3.3.3 Layout of an Agro-chemical based (e.g. bio-diesel) power plant
	₄th	3.3.3 Layout of an Agro-chemical based (e.g. bio-diesel) power plant

Week	Class Day	Topics to be Covered
	1st	3.3.4 Features of the solid, liquid and gas biomasses as fuel for biomass power plant
₁₀ th	₂ nd	Wind Power Plants 4.1 Wind Map of India: Wind power density in watts per square meter
	₃rd	4.2 Layout of Horizontal axis large wind power plant
	4th	4.3 Geared wind power plant
₁₁ th	₁st	4.4 Direct-drive wind power plant
	₂ nd	4.5 Salient Features of electric generators used in large wind power plants
11	3rd	4.5.1 Constant Speed Electric Generators)
	₄th	4.5.2 Squirrel Cage Induction Generators (SCIG)
₁₂ th	1st	4.5.2 Squirrel Cage Induction Generators (SCIG)
	₂ nd	4.5.3 Wound Rotor Induction Generator (WRIG)
	3rd	4.6 Variable Speed Electric Generators
	4th	4.6.1 Doubly-fed induction generator (DFIG)
	1st	4.6.2 Wound rotor synchronous generator (WRSG)
	₂ nd	4.6.3 Permanent magnet synchronous generator (PMSG)
13th	3rd	Economics of Power Generation and Interconnected Power System 5.1 Related terms: connected load, firm power, cold reserve, hot reserve, spinning reserve. Base load and peak load plants; Load curve, load duration curve, integrated duration curve
	₄th	5.1 Related terms: connected load, firm power, cold reserve, hot reserve, spinning reserve. Base load and peak load plants; Load curve, load duration curve, integrated duration curve
	₁ st	5.2 Cost of generation: Average demand, maximum demand, demand factor, plant capacity factor, plant use factor, diversity factor, load factor and plant load factor
₁₄ th	₂ nd	5.2 Cost of generation: Average demand, maximum demand, demand factor, plant capacity factor, plant use factor, diversity factor, load factor and plant load factor
	3rd	5.3 Choice of size and number of generator units

week	Class Day	Topics to be Covered	
14th	₄ th	5.3 Choice of size and number of generator units	
	1st	5.4 Combined operation of power station	
₁₅ th	₂ nd	5.4 Combined operation of power station	
	3rd	5.5 Causes, Impact and reasons of Grid system fault: State grid, national grid, brownout and blackout; sample blackouts at national and international level	
	₄th	5.5 Causes, Impact and reasons of Grid system fault: State grid, national grid, brownout and blackout; sample blackouts at national and international level	

10.4.2

Sign of Faculty

Sign of H.O.D.