

NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha)

LESSON PLAN

SUBJECT: EEEPC-205(DIGITAL ELECTRONICS)

Name Of The Faculty :- Er.Niranjan Sahu

Branch :- Electrical & Electronics Engg. Semester :- 3rd

Academic Year: 2025-26 Examination: - 2025 (w)

CHAPTER WISE DISTRIBUTION OF PERIODS

SI.No.	Name of the chapter as per the Syllabus	No. of Periods as per the Syllabus	No. of periods actually needed
1	Logic Gates	4	6
2	Boolean Algebra	5	7
3	Combinational Logic Circuits	6	8
4	Latches & Flip-Flops	6	8
5	Counters	7	9
6	Shift Registers		7
7	Semiconductor Memories		9
8	Sequential Circuit Design	5	6
	45	60	

1 Saprilyons

Sign of Faculty

Sign of H.O.D.

Name of the programme: Diploma in Electrical & Electronics Engg.	Semester: 3rd	Name of the Teaching Faculty: Er.Niranjan Sahu		
		Academic Year: 2025-26 Examination	1 : 2025 (W)	
Course Code: EEEPC- 205(TH-3)	Course Year: Second Year	No. of Classes Alloted Per Week :	4	
		Planned Classes Required to Complete the Course	60	
Week	Class Day	Topics to be Covered		
1 st	1 st	Logic Gates 1.1 Basic logic gates: OR, AND, and NOT 1.1.1 Truth tables 1.1.2 Logic symbols		
	2 nd	1.1.3 Logic voltage levels 1.1.4 Logic circuit design examples		
	3 rd	1.2 Integrated Circuits1.3 NOR, NAND, Exclusive OR, and Exclusive NOR gates.		
	4 th	1.4 NOR and NAND gates used as inverters.		
	1 st	1.5 Fan-in and fan-out		
2 nd	2 nd	1.6 Termination of unused inputs 1.7 AND and OR gates constructed from NAND and NOR gates		
	3 rd	Boolean Algebra 2.1 Boolean operations (OR, AND, NOT) 2.2 Representation of logic circuits by Boolean expressions.		
	4 th	2.3 Laws of Boolean algebra: 2.3.1 Double inversion: A"=A 2.3.2 OR identities: A+0 = A, A+1=1, A+A=A, A+A'=1		
3 rd	1 st	2.3.3 AND identities: A.0=0, A.1=A, A.A=A, A.A'=0 2.3.4 Cumulative laws: A+B=B+A, A.B=B.A 2.3.5 Associative laws:(A+B)+C=A+(B+C), (A.B).C=A.(B.C)		
	2 nd	2.3.6 Distributive laws: A+(B.C)=(A+B).(A+C), A.(B+C)=A.B+A.C 2.3.7 DeMorgan's theorems :(A+B+C+)'=A'.B'.C',(A.B.C)'=A'+B'+C'		
	3 rd	2.3.8 Applications to logic circuit simplifications and design2.4 Equivalent logic gates2.5 NAND and NOR implementations of logic circuits.		
	4 th	2.6 Standard forms of Boolean expressions 2.6.1 Sum-of-products (SOP) 2.6.2 Product-of-sums (POS)		

Week	Class Day	Topics to be Covered
4 th	1 st	2.7 Karnaugh mapping
	2 nd	Combinational Logic Circuits 3.1 Half adder 3.2 Full adder
	3 rd	3.3 Half Subtractor 3.4 Full Subtractor
	4 th	3.5 4 bit adder. 3.6 Multiplexer (4:1)
5 th	1 st	3.7 De- multiplexer (1:4)
	2 nd	3.8 Decoder 3.9 Encoder
	3 rd	3.10 Digital comparator (3 Bit)
	4 th	3.11 Seven segment Decoder
	1 st	Revision on Full Subtractor
6 th	2 nd	Latches & Flip-Flops 4.1. Basic latches 4.1.1 NOR latch
6	3 rd	4.1.2 NAND latch 4.1.3 Example uses of latches
	4 th	Latches & Flip-Flops 4.1. Basic latches
	1 st	4.1.2 NAND latch 4.1.3 Example uses of latches
th.	2 nd	4.2. Gated latches 4.2.1 Gated S-R latch 4.2.2 Gated D-latch
7 th	3 rd	4.3. Flip-flops:4.3.1 Master-slave and edge-triggered principles
	4 th	4.3.2 S-R flip-flop 4.3.3 D-type flip-flop 4.3.4 J-K flip-flop
	1 st	4.3.5 T-type flip-flop 4.3.6 Flip-flop timing diagrams
8 th	2 nd	Counters 5.1 Circuit diagram and working principle of Binary counters
	3 rd	5.2 up-down counter (circuits, truth tables, and timing diagrams)
	4 th	5.3 Asynchronous counters and ripple counter
	1 st	5.4 Synchronous counters
	2 nd	5.5 Decade counter
9 th	3 rd	5.6 Module–n counter and its combinations
	4 th	5.7. Divide-by-n counters obtained from truncated binary sequences5.8. Synchronous counter design using D-type flip-flops

Week	Class Day	Topics to be Covered
10 th	1 st	5.9 Synchronous counter design using J-K flip-flops
	2 nd	Revision on Synchronous counters
	3 rd	Shift Registers 6.1 Circuit diagram, truth tables, and timing diagrams of Shift Registers
	4 th	6.2 Serial input shift register
	1 st	6.3 Serial/parallel load shift register
11 th	2 nd	6.4 Shift register counters 6.4.1. Ring counter
	3 rd	6.4.2. Self-starting ring counter
	4 th	6.4.2. Self-starting ring counter
	1 st	6.4.3. Johnson counter
12 th	2 nd	Semiconductor Memories 7.1 Define the terms ROM, RAM, PROM, EPROM.
	3 rd	7.2 Draw a typical memory cell
	4 th	7.3 Design a small diode matrix ROM to serve as a code converter.
	1 st	7.4 Design and draw the logic diagram of a specified size memory system
13 th	2 nd	7.4 Design and draw the logic diagram of a specified size memory system
13	3 rd	7.5 Operating principle of dynamic memory
	4 th	7.6 Advantages and disadvantages of dynamic memory vs. static memory
	1 st	7.7 Difference between dynamic memory vs. static memory
	2 nd	Revision on Operating principle of dynamic memory
14 th	3 rd	Sequential Circuit Design 8.1 Combinational vs. Sequential circuits
	4 th	8.1 Combinational vs. Sequential circuits
	1 st	8.2 Adder, Subtractor, decoder, multiplexer, de-multiplexer, and comparator
15 th	2 nd	8.2 Adder, Subtractor, decoder, multiplexer, de-multiplexer, and comparator
15	3 rd	8.3. Finite state machines- Concept only
	4 th	Revision on Finite state machines

Sign of Faculty

Sign of H.O.D.