

NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha)

LESSON PLAN

SUBJECT: TH-2 (DESIGN OF MACHINE ELEMENT)

Name Of The Faculty :- Er.Ranjit Giri

Branch:- Mechanical Engineering Semester:- 5th

Academic Year: 2025-26 Examination: - 2025 (w)

CHAPTER WISE DISTRIBUTION OF PERIODS

SI.No.	Name of the chapter as per the Syllabus	No. of Periods as per the Syllabus	No. of periods actually needed
1	INTRODUCTION	12	12
2	DESIGN OF FASTENING ELEMENTS	12	12
3	DESIGN OF SHAFT AND KEYS	12	12
4	DESIGN OF COUPLING	12	12
5	DESIGN OF CLOSED COIL HELICAL SPRING	12	12
	Total Period:	60	60

Pilo 101 12025

Sign of Faculty

M) 16/07/2025

Sign of H.O.D.

Name of the programme: Diploma in MECHANICAL ENGINEERING	Semester: 5th	Name of the Teaching Faculty: Er. Ranjit GIRI		
		Academic Year: 2025-26 Examin	nation : 2025 (W)	
Course Code: TH-2	Course Year: Third Year	No. of Classes Alloted Per Week :	4	
		Planned Classes Required to Complete the Course	60	
Week	Class Day	Topics to be Covered		
1 st	1 st	1.1 Introduction to Machine Design and Classify it.		
	2 nd	1.1 Introduction to Machine Design and Classify it.		
	3 rd	1.2. Different mechanical engineering materials used in design with their uses and their mechanical and physical properties.		
	4 th	1.2. Different mechanical engineering materials used in design with their uses and their mechanical and physical properties.		
2 nd	1 st	1.3 Define working stress, yield stress, ultimate stress & factor of safety and stress –strain curve for M.S & C.I.		
	2 nd	1.3 Define working stress, yield stress, ultimate stress & factor of safety and stress –strain curve for M.S & C.I.		
	3 rd	1.4 Modes of Failure (By elastic deflection, general yielding & fracture)		
	4 th	1.4 Modes of Failure (By elastic deflection, general yielding & fracture)		
3 rd	1 st	1.5 State the factors governing the design of machine elements.		
	2 nd	1.5 State the factors governing the design of machine elements.		
	3 rd	1.6 Describe design procedure.		
	4 th	1.6 Describe design procedure.		
4 th	1 st	2.1 Joints and their classification.		
	2 nd	2.2 State types of welded joints		
	3 rd	2.3 State advantages of welded joints over other joints.		
	4 th	2.4 Design of welded joints for eccentric loads.		
5 th	1 st	2.5 State types of riveted joints and types of rivets		
	2 nd	2.6 Describe failure of riveted joints.		
	3 rd	2.7 Determine strength & efficiency of riveted joints.		
	4 th	2.7 Determine strength & efficiency of riveted joints.		

Week	Class Day	Topics to be Covered
6 th	1 st	2.8 Design riveted joints for pressure vessel
	2 nd	2.8 Design riveted joints for pressure vessel
	3 rd	2.9 Solve numerical on Welded Joint and Riveted Joints.
	4 th	2.9 Solve numerical on Welded Joint and Riveted Joints.
7 th	1 st	3.1 State function of shafts
	2 nd	3.2 State materials for shafts
	3 rd	3.3 Design solid & hollow shafts to transmit a given power at given rpm based on a) Strength: (i) Shear stress, (ii) Combined bending tension; b) Rigidity: (i) Angle of twist, (ii) Deflection, (iii) Modulus of rigidity
	4 th	3.3 Design solid & hollow shafts to transmit a given power at given rpm based on a) Strength: (i) Shear stress, (ii) Combined bending tension; b) Rigidity: (i) Angle of twist, (ii) Deflection, (iii) Modulus of rigidity
8 th	1 st	3.4 State standard size of shaft as per I.S.
	2 nd	3.5 State function of keys, types of keys & material of keys.
	3 rd	3.6 Describe failure of key, effect of key way.
	4 th	3.7 Design rectangular sunk key considering its failure against shear
	1 st	3.9 State specification of parallel key, gib-head key, taper key as per I.S.
9 th	2 nd	3.10 Solve numerical on Design of Shaft and keys.
	3 rd	3.10 Solve numerical on Design of Shaft and keys.
	4 th	3.10 Solve numerical on Design of Shaft and keys.
10 th	1 st	4.1 Design of Shaft Coupling
	2 nd	4.2 Requirements of a good shaft coupling
	3 rd	4.3 Types of Coupling
	4 th	4.4 Design of Sleeve or Muff-Coupling.
11 th	1 st	4.4 Design of Sleeve or Muff-Coupling.
	2 nd	4.5 Design of Clamp or Compression Coupling
	3 rd	4.5 Design of Clamp or Compression Coupling

Week	Class Day	Topics to be Covered	
11 th	4 th	4.5 Design of Clamp or Compression Coupling	
12 th	1 st	4.6 Solve simple numerical on above.	
	2 nd	4.6 Solve simple numerical on above.	
	3 rd	4.6 Solve simple numerical on above.	
	4 th	4.6 Solve simple numerical on above.	
13 th	1 st	5.1 Materials used for helical spring	
	2 nd	5.1 Materials used for helical spring	
	3 rd	5.2 Standard size spring wire. (SWG).	
	4 th	5.3 Terms used in compression spring.	
14 th	1 st	5.4 Stress in helical spring of a circular wire.	
	2 nd	5.4 Stress in helical spring of a circular wire.	
	3 rd	5.5 Deflection of helical spring of circular wire.	
	4 th	5.6 Surge in spring	
15 th	1 st	5.7 Solve numerical on design of closed coil helical compression spring.	
	2 nd	5.7 Solve numerical on design of closed coil helical compression spring.	
	3 rd	5.7 Solve numerical on design of closed coil helical compression spring.	
	4 th	REVISION	

10/01/2025

Sign of Faculty

Sign of H.O.D.