NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha) ## **LESSON PLAN** **SUBJECT: AEPC203 TH-2 (STRENGTH OF MATERIALS)** Name Of The Faculty :- Er. Kanhai Gupta Branch: - Mechanical Engineering Semester: - 3rd Academic Year: 2025-26 Examination: - 2025 (W) ## **CHAPTER WISE DISTRIBUTION OF PERIODS** | Sl.No. | Name of the chapter as per the Syllabus | No. of
Periods
as per
the
Syllabus | No. of
periods
actually
needed | |--------|--|--|---| | 1 | Simple Stresses & Strains , Strain Energy | 10 | 14 | | 2 | Shear Force & Bending Moment Diagrams | 9 | 12 | | 3 | Theory of Simple Bending and Deflection of Beams | 9 | 10 | | 4 | Torsion in Shafts and Springs | 9 | 13 | | 5 | Thin Cylindrical Shells | 8 | 11 | | | Total Period: | 45 | 60 | Sign of Faculty Sign of H.O.D. | Name of the
programme:
Diploma in
MECHANICAL
ENGINEERING | Semester:
3rd | Name of the Teaching Faculty: Er. Kanhai Gupta | | | |--|-----------------------------------|---|----|--| | | | Academic Year: 2025-26 Examination: 2025 (W | | | | Course
Code:
AEPC203
TH-2 | Course
Year:
Second
Year | No. of Classes Alloted Per Week : | 4 | | | | | Planned Classes Required to Complete the Course | 60 | | | Week | Class Day | Topics to be Covered | | | | | 1 st | Introduction to Strength of Material . | | | | * | 2 nd | I. Simple Stresses and Strains: Types of forces; Stress, Strain and their nature; | | | | 1 st | 3 rd | Stress, Strain and their nature; | | | | | 4 th | Mechanical properties of common engineering materials; | | | | | 1 st | Significance of various points on stress – strain diagram for M.S. and C.I. specimens; | | | | nd | 2 nd | Significance of factor of safety; Relation between elastic constants; | | | | 2 nd | 3 rd | Relation between elastic constants; | | | | | 4 th | Stress and strain values in bodies of uniform section and of composite section under the influence of normal forces; | | | | | 1 st | Stress and strain values in bodies of uniform section and of composite section under the influence of normal forces; | | | | rd | 2 nd | Thermal stresses in bodies of uniform section and composite sections; | | | | 3 rd | 3 rd | Related numerical problems on the above topics. | | | | | 4 th | Strain Energy: Strain energy or resilience, proof resilience and modulus of resilience; | | | | | 1 st | Derivation of strain energy for the following cases: i) Gradually applied load, | | | | | 2 nd | ii) Suddenly applied load, iii) Impact/ shock load; | | | | 4 th | 3 rd | Related numerical problems. | | | | | 4 th | II. Shear Force & Bending Moment Diagrams: Types of beams with examples: a) Cantilever beam, b) Simply supported beam, c) Over hanging beam, d) Continuous beam, e) Fixed beam; Types of Loads – Point load, UDL and UVL; | | | | 5 th | 1 st | Definition and explanation of shear force and bending moment; Calculation of shear force and bending moment and drawing the S.F and B.M. diagrams by the analytical method only for the following cases: a) Cantilever with point loads, | | | | | 2 nd | b) Cantilever with uniformly distributed load, | | | | | 3 rd | Related numerical problems. | | | | | 4 th | c) Simply supported beam with point loads, | | | | Week | Class Day | Topics to be Covered | |-------------------------|-----------------|---| | 6 th | 1 st | d) Simply supported beam with UDL, | | | 2 nd | Related numerical problems. | | | 3 rd | e) Over hanging beam with point loads, at the center and at free ends, | | | 4 th | f) Over hanging beam with UDL throughout, | | | 1 st | Related numerical problems. | | | 2 nd | g) Combination of point and UDL for the above; | | 7 th | 3 rd | Related numerical problems. | | | 4 th | III. Theory of Simple Bending and Deflection of Beams: Explanation of terms: Neutral layer, Neutral Axis, Modulus of Section, | | 8 th | 1 st | Moment of Resistance, Bending stress, Radius of curvature; Assumptions in theory of simple bending; | | | 2 nd | Bending Equation M/I = σ/Y = E/R with derivation; | | | 3 rd | Problems involving calculations of bending stress, modulus of section and moment of resistance; | | | 4 th | Problems involving calculations of bending stress, modulus of section and moment of resistance; | | | 1 st | Calculation of safe loads and safe span and dimensions of cross- section; | | 9 th | 2 nd | Definition and explanation of deflection as applied to beams; | | | 3 rd | Deflection formulae without proof for cantilever and simply supported beams with point load and UDL only (Standard cases only); | | | 4 th | Deflection formulae without proof for cantilever and simply supported beams with point load and UDL only (Standard cases only); | | 10 th | 1 st | Related numerical problems. | | | 2 nd | IV. Torsion in Shafts and Springs: Definition and function of shaft; Calculation of polar M.I. for solid and hollow shafts; | | 10 | 3 rd | Definition and function of shaft; Calculation of polar M.I. for solid and hollow shafts; | | | 4 th | Assumptions in simple torsion; Derivation of the equation T/J=fs/R=G θ /L; | | | 1 st | Derivation of the equation T/J=fs/R=Gθ/L; | | th | 2 nd | Derivation of the equation T/J=fs/R=Gθ/L; | | 11 th | 3 rd | Assumptions in simple torsion; Derivation of the equation T/J=fs/R=G θ /L; | | | 4 th | Problems on design of shaft based on strength and rigidity; | | 12 th | 1 st | Numerical Problems related to comparison of strength and weight of solid and hollow shafts; | | Week | Class Day | Topics to be Covered | | |------------------|-----------------|---|--| | 12 th | 2 nd | Numerical Problems related to comparison of strength and weight of solid and hollow shafts; | | | | 3 rd | Classification of springs; Nomenclature of closed coil helical spring; | | | | 4 th | Deflection formula for closed coil helical spring (without derivation); stiffness of spring; | | | 13 th | 1 st | Numerical problems on closed coil helical spring to find safe load, deflection, size of coil and number of coils. | | | | 2 nd | Numerical problems on closed coil helical spring to find safe load, deflection, size of coil and number of coils. | | | | 3 rd | V. Thin Cylindrical Shells: Explanation of longitudinal and hoop stresses in the light of circumferential and longitudinal failure of shell; | | | | 4 th | Explanation of longitudinal and hoop stresses in the light of circumferential and longitudinal failure of shell; | | | 14 th | 1 st | Explanation of longitudinal and hoop stresses in the light of circumferential and longitudinal failure of shell; | | | | 2 nd | Derivation of expressions for the longitudinal and hoop stress for seamless and seam shells; | | | | 3 rd | Derivation of expressions for the longitudinal and hoop stress for seamless and seam shells; | | | | 4 th | Related numerical Problems for safe thickness and safe working pressure. | | | 15 th | 1 st | Revision & Doubt clear for Chapter-1 | | | | 2 nd | Revision & Doubt clear for Chapter-2 | | | | 3 rd | Revision & Doubt clear for Chapter-4 | | | | 4 th | Revision & Doubt clear for Chapter-3, 5 | | Sign of Faculty Sign of H.O.D.