NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha) ## **LESSON PLAN** SUBJECT: HYDRAULIC MACHINE & INDUSTRIAL FLUID POWER(TH-3) Name Of The Faculty:- Er. Bishnu Charan Jena **Branch**:- Mechanical Engineering Semester:- 5th Academic Year: 2025-26 Examination: 2025 (W) ## **CHAPTER WISE DISTRIBUTION OF PERIODS** No. of Periods No. of periods Name of the chapter as per the Syllabus Sl.No. as per the actually Syllabus needed **HYDRAULIC TURBINES** 1 15 17 **CENTRIFUGAL PUMPS** 2 5 9 PNEUMATIC SYSTEM 3 20 24 **HYDRAULIC SYSTEM** 4 20 25 **Total Period:** 60 75 Doighous M) 16/07/2025 sign of the faculty Sign of H.O.D | Name of the
programme:
Diploma in
MECHANICAL
ENGINEERI9NG | Semester:
5th | Name of the Teaching Faculty: Er. Bishnu Charan Jena | | | |---|-------------------------------|---|--------------------|--| | | | Academic Year: 2025-26 Exam | ination : 2025 (W) | | | Course Code:
TH-3 | Course
Year:
Third Year | No. of Classes Alloted Per Week : | 5 | | | | | Planned Classes Required to Complete the Course | 75 | | | Week | Class Day | Topics To be Covered | | | | 1 st | 1 st | 1.1 Definition and classification of hydraulic turbines | | | | | 2 nd | 1.1 Definition and classification of hydraulic turbines | | | | | 3 rd | 1.1 Construction and working principle of impulse turbine. | | | | | 4 th | 1.1 Construction and working principle of impulse turbine. | | | | | 5 th | 1.1 Velocity diagram of moving blades, work done and derivation of various efficiencies of Francis turbine. | | | | 2 nd | 1 st | 1.1 Velocity diagram of moving blades, work done and derivation of various efficiencies of Francis turbine. | | | | | 2 nd | 1.1 Velocity diagram of moving blades, work done and derivation of various efficiencies of Francis turbine. | | | | | 3 rd | 1.5 Velocity diagram of moving blades, work done and derivation of various efficiencies of Kaplan turbine | | | | | 4 th | 1.5 Velocity diagram of moving blades, work done and derivation of various efficiencies of Kaplan turbine | | | | | 5 th | 1.5 Velocity diagram of moving blades, work done and derivation of various efficiencies of Kaplan turbine | | | | 3 rd | 1 st | Velocity diagram of moving blades, work done and derivation of various efficiencies of Francis turbine. | | | | | 2 nd | Velocity diagram of moving blades, work done and derivation of various efficiencies of Francis turbine. | | | | | 3 rd | Numerical on above | | | | | 4 th | Numerical on above | | | | | 5 th | Numerical on above | | | | 4 th | 1 st | Distinguish between impulse turbine and reaction turbine. | | | | | 2 nd | Distinguish between impulse turbine and reaction turbine. | | | | | 3 rd | work done and derivation of various efficiencies of centrifugal pumps | | | | | 4 th | Numerical on above | | | | | 5 th | CENTRIFUGAL PUMPS | | | | Week | Class Day | Topics To be Covered | | |-------------------------|------------------------|--|--| | 5 th | 1 st | Construction and working principle of centrifugal pumps | | | | 2 nd | Construction and working principle of centrifugal pumps | | | | 3 rd | RECIPROCATING PUMPS | | | | 4 th | Describe construction & Describe construction amp; working of double acting reciprocating pump | | | | 5 th | Describe construction & Descri | | | 6 th | 1 st | Describe construction & Descri | | | | 2 nd | Derive the formula foe power required to drive the pum | | | | 3 rd | (Single acting & amp; double acting) | | | | 4 th | Define slip | | | | 5 th | State positive & Description of the state | | | | 1 st | State positive & Description of the state | | | | 2 nd | State positive & Description of the state | | | 7 th | 3 rd | Solve numerical on above | | | | 4 th | Solve numerical on above | | | | 5 th | Solve numerical on above | | | | 1 st | PNEUMATIC CONTROL SYSTEM | | | | 2 nd | Elements –filter-regulator-lubrication unit | | | 8 th | 3 rd | Pressure relief valves | | | | 4 th | Pressure relief valves | | | | 5 th | Pressure regulation valves | | | | 1 st | Pressure regulation valves | | | | 2 nd | Direction control valves | | | 9 th | 3 rd | 3/2DCV,5/2 DCV,5/3DCV | | | | 4 th | 3/2DCV,5/2 DCV,5/3DCV | | | | 5 th | Flow control valves | | | 10 th | 1 st | Throttle valves | | | | 2 nd | Throttle valves | | | Week | Class Day | Topics To be Covered | | |-------------------------|------------------------|---|--| | 10 th | 3 rd | ISO Symbols of pneumatic components | | | | 4 th | ISO Symbols of pneumatic components | | | | 5 th | Direct control of single acting cylinder | | | 11 th | 1 st | Direct control of single acting cylinder | | | | 2 nd | Operation of double acting cylinder | | | | 3 rd | Operation of double acting cylinder with metering in and metering out control | | | | 4 th | HYDRAULIC CONTROL SYSTEM | | | | 5 th | HYDRAULIC CONTROL SYSTEM | | | 12 th | 1 st | Hydraulic system, its merit and demerits | | | | 2 nd | Hydraulic system, its merit and demerits | | | | 3 rd | Hydraulic system, its merit and demerits | | | | 4 th | Hydraulic accumulators | | | | 5 th | Pressure control valves | | | 13 th | 1 st | Pressure relief valves | | | | 2 nd | Pressure regulation valves | | | | 3 rd | 3/2DCV,5/2 DCV,5/3DCV | | | | 4 th | 3/2DCV,5/2 DCV,5/3DCV | | | | 5 th | Throttle valves | | | 14 th | 1 st | Throttle valves | | | | 2 nd | Fluid power pumps | | | | 3 rd | Fluid power pumps | | | | 4 th | ISO Symbols for hydraulic components. | | | | 5 th | ISO Symbols for hydraulic components. | | | 15 th | 1 st | Direct control of single acting cylinder | | | | 2 nd | Operation of double acting cylinder with metering in and metering out control | | | | 3 rd | Comparison of hydraulic and pneumatic system | | | | 4 th | Comparison of hydraulic and pneumatic system | | | | 5 th | Operation of double acting cylinder with metering in and metering out control | |