NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha) ## **LESSON PLAN** **SUBJECT: MEPC205 TH-03 (MATERIAL SCIENCE & ENGINEERING)** Name Of The Faculty: - Er. Biswabistruta Mohapatra **Branch :-** Mechanical Engineering Semester :- 3rd Academic Year: 2025-26 Examination: - 2025 (w) ## **CHAPTER WISE DISTRIBUTION OF PERIODS** | SI.No. | Name of the chapter as per the Syllabus | No. of
Periods
as per the
Syllabus | No. of
periods
actually
needed | |--------|---|---|---| | 1 | Crystal structures and Bonds | 10 | 13 | | 2 | Phase diagrams, Ferrous metals and its Alloys | 9 | 12 | | 3 | Non-ferrous metals and its Alloys | 9 | 12 | | 4 | Failure analysis & Testing of Material | 9 | 12 | | 5 | Corrosion & Surface Engineering | 8 | 11 | | | Total Period: | 45 | 60 | Sign of Faculty Sign of H.O.D. | Name of the programme: | Semester:
3rd | Name of the Teaching Faculty: Er. Biswabistruta Mohapatra | | | | |---------------------------|------------------------|---|------------------------|--|--| | Mechanical
ENGINEERING | | Academic Year: 2025-26 Examinat | i on : 2025 (W) | | | | Course
Code: | Course
Year: | No. of Classes Alloted Per Week : | 4 | | | | MEPC205
TH-3 | Second
Year | Planned Classes Required to Complete the Course | 60 | | | | Week | Class Day | Topics to be Covered | | | | | | 1 st | Unit cell and space lattice | | | | | a st | 2 nd | Crystal system: The seven basic crystal systems | | | | | 1 st | 3 rd | Crystal system: The seven basic crystal systems | | | | | | 4 th | Crystal structure for metallic elements; FCC and HCP | | | | | | 1 st | Atomic radius: definition, atomic radius for Simple Cubic , E | BCC and FCC | | | | a nd | 2 nd | Atomic radius: definition, atomic radius for Simple Cubic , BCC and FCC | | | | | 2 nd | 3 rd | Classification - primary or chemical bond, secondary or molecular bond | | | | | | 4 th | Typesof primary bonds: Ionic, Covalent and Metallic Bonds | | | | | | 1 st | Types of secondary bonds: Dispersion bond, Dipole bond | | | | | ard | 2 nd | Unit-II: Phase diagrams, Ferrous metals and its Alloys :Isomorphs | | | | | 3 rd | 3 rd | Eutectic and eutectoid systems | | | | | | 4 th | Iron-Carbon binary diagram; Iron and Carbon Steels | | | | | | 1 st | Iron ores – Pig iron: classification, composition and effects of impurities on iron | | | | | 4 th | 2 nd | Cast Iron: classification, composition, properties and uses | | | | | | 3 rd | Wrought Iron: properties, uses/applications of wrought Iron | | | | | | 4 th | standard commercial grades of steel as per BIS and AISI | | | | | | 1 st | Alloy Steels – purpose of alloying; effects of alloying elements | | | | | 5 th | 2 nd | Important alloy steels: Silicon steel, High Speed Steel (HSS) | | | | | 5 | 3 rd | types of SS, applications of SS | | | | | | 4 th | types of SS, applications of SS | | | | | | 1 st | magnet steel –composition, properties and uses | | | | | -th | 2 nd | iii.Non-ferrous metals and its Alloys: Properties and uses of aluminum | | | | | 6 th | 3 rd | Properties and uses of copper, tin,lead, zinc, magnesium and nickel | | | | | | 4 th | Copper alloys: Brasses, bronzes – composition, properties and uses | | | | | | 1 st | Nickel alloys: Inconel, monel, nicPerome composition | | | | | 7 th | 2 nd | Properties and uses of Nickel alloys: Inconel, monel, nicPerome | | | | | ' | 3 rd | Anti-friction/Bearing alloys | | | | | | 4 th | Standard commercial grades as per BIS | | | | | 1st Standard commercial grades as per ASME 2nd hindalium, magnelium -composition, properties and uses 3rd various industrial uses of alloys 4th various industrial uses of alloys 1v.Failure analysis & Testing of Materials: Introduction to failure analysis 2nd Iv.Failure analysis & Testing of Materials: Introduction to failure analysis 3rd cleavage; notch sensitivity; fatigue 4th endurance limit; characteristics of fatigue fracture 1st variables affecting fatigue life; creep 2nd Destructive testing:Tensile testing | | |--|-------------| | 3 rd various industrial uses of alloys 4 th various industrial uses of alloys 1 st IV.Failure analysis & Testing of Materials: Introduction to failure analysis 2 nd IV.Failure analysis & Testing of Materials: Introduction to failure analysis 3 rd cleavage; notch sensitivity; fatigue 4 th endurance limit; characteristics of fatigue fracture 1 st variables affecting fatigue life; creep | | | yarious industrial uses of alloys 4 th various industrial uses of alloys 1 st IV.Failure analysis & Testing of Materials: Introduction to failure analysis 2 nd IV.Failure analysis & Testing of Materials: Introduction to failure analysis 3 rd cleavage; notch sensitivity; fatigue 4 th endurance limit; characteristics of fatigue fracture 1 st variables affecting fatigue life; creep | | | 1st IV.Failure analysis & Testing of Materials: Introduction to failure analysis 2nd IV.Failure analysis & Testing of Materials: Introduction to failure analysis 3rd cleavage; notch sensitivity; fatigue 4th endurance limit; characteristics of fatigue fracture variables affecting fatigue life; creep | | | 9 th 2 nd IV.Failure analysis & Testing of Materials: Introduction to failure analysis 3 rd cleavage; notch sensitivity; fatigue 4 th endurance limit; characteristics of fatigue fracture variables affecting fatigue life; creep | | | 3 rd cleavage; notch sensitivity; fatigue 4 th endurance limit; characteristics of fatigue fracture 1 st variables affecting fatigue life; creep | sis | | 3rd cleavage; notch sensitivity; fatigue 4th endurance limit; characteristics of fatigue fracture 1st variables affecting fatigue life; creep | | | 1 st variables affecting fatigue life; creep | | | | | | and Destructive testing: Tensile testing | | | Zeth Z Destructive testing. Tensile testing | | | 10 th 3 rd compression testing; | | | 4 th Hardness testing: Brinell, Rockwell | | | 1 st torsion test, bend test; | | | 2 nd torsion test, bend test; | | | 11 th 3 rd fatigue test; creep test | | | 4 th Non- destructive testing: Visual Inspection | | | 1 st V. Corrosion & Surface Engineering: Nature of corrosion and its causes | | | 2 nd Electro chemical re-actions ; | | | 3 rd Electrolytes | | | 4 th Factors affecting corrosion: Environment | | | 1 st Material properties and physical conditions | | | 2 nd Types of corrosion; Corrosion control: Material selection, environment | control and | | 13 th Organic coatings; Electroplating and Special metallic plating | | | 4 th Electro polishing and photo- etching | | | 1 st Electro polishing and photo- etching | | | 2 nd Conversion coatings: Oxide, | | | 3 rd phosphate and chromate coatings | | | 4 th Thin film coatings: PVD and CVD | | | 1 st Surface analysis; Hard-facing, | | | 2 nd thermal spraying: | | | 15 th 3 rd high- energy processes; | | | 4 th Process/mate-rial selection | | Imphalatna 10/7/25 Sign of Faculty M) 10/07/2025 Sign of H.O.D.