NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha) ## **LESSON PLAN** **SUBJECT: ENGINEERING MATERIALS(TH-3)** Name Of The Faculty :- Er. Ramakanta Sethi Branch :- Automobile Engineering Semester :- 3rd **Session :-** 2025-26 **Examination :-** 2025 (W) ## **CHAPTER WISE DISTRIBUTION OF PERIODS** | SI.No. | Name of the chapter as per the Syllabus | No. of
Periods
as per
the
Syllabus | No. of
periods
actually
needed | |--------|---|--|---| | 1 | Engineering materials and their properties, Ferrous Materials and alloys. | 10 | 15 | | 2 | Iron – Carbon diagram, Crystal imperfections. | 12 | 15 | | 3 | Heat Treatment. | 7 | 5 | | 4 | Non -ferrous alloys, Bearing and spring Materials. | 9 | 13 | | 5 | Polymers, Composites and Ceramics. | 7 | 12 | | | Total Period | 45 | 60 | Sign of Faculty Sign of H.O.D. | Name of the programme: Diploma in AUTOMOBILE ENGINEERING | Semester:
3rd | Name of the Teaching Faculty: Er. Ramakanta Sethi | | | |--|-----------------------------------|--|--------------|--| | | | Academic Year : 2025-26 Examination | on: 2025 (W) | | | Course
Code:
TH-3
(AEPC205) | Course
Year:
Second
Year | No. of Classes Alloted Per Week : | 4 | | | | | Planned Classes Required to Complete the Course | 60 | | | Week | Class Day | Topics to be Covered | | | | 1 st | 1 st | UNIT NO-I,Introduction:ENGG. MATERIALS. | | | | | 2 nd | Material classification. | | | | | 3 rd | Ferrous and non-ferrous category and alloys. | | | | | 4 th | Properties of Materials. | | | | | 1 st | Properties of Materials: Physical, Chemical and Mechanical, | | | | 2 nd | 2 nd | Performance requirements | | | | | 3 rd | Material reliability and safety. | | | | | 4 th | Ferrous Materials and alloys: Characteristics. | | | | 3 rd | 1 st | Application of ferrous materials, Classification. | | | | | 2 nd | Composition and application of low carbon steel, | | | | | 3 rd | Medium carbon steel and High carbon steel. | | | | | 4 th | Alloy steel: Low alloy steel. | | | | | 1 st | High alloy steel, tool steel and stainless steel | | | | 4 th | 2 nd | Tool steel: Effect of various alloying elements such as Cr, Mn. | | | | | 3 rd | Tool steel: Effect of various alloying elements such as Ni, V, Mo. | | | | | 4 th | UNIT NO-II,Iron – Carbon diagram: Concept of phase diagram | | | | 5 th | 1 st | Cooling curves of iron carbon diagram. | | | | | 2 nd | Features of Iron-Carbon diagram. | | | | | 3 rd | Salient micro-constituents of Iron and Steel. | | | | | 4 th | Crystal imperfections: Crystal defines. | | | | Week | Class Day | Topics to be Covered | |-------------------------|-----------------|---| | 6 th | 1 st | Classification of crystals, ideal crystal and crystal imperfections. | | | 2 nd | Classification of imperfection: Point defects, line defects. | | | 3 rd | surface defects and volume defects. | | | 4 th | Types and causes of point defects: Vacancies, Interstitials and impurities. | | 7 th | 1 st | Types and causes of point defects: Vacancies, Interstitials and impurities. | | | 2 nd | Types and causes of line defects. | | | 3 rd | Edge dislocation & Screw dislocation. | | | 4 th | Effect of imperfection on material properties. | | | 1 st | Deformation by slip and twinning. | | +h | 2 nd | Effect of deformation on material properties. | | 8 th | 3 rd | UNIT NO-III, Heat Treatment: Purpose of Heat treatment. | | | 4 th | Process of heat treatment. | | 9 th | 1 st | Annealing, normalizing, Hardening, tampering. | | | 2 nd | stress relieving measures.Surface hardening: Carburizing. | | | 3 rd | Nitriding, Effect of heat treatment on properties of steel, Hardenability of steel. | | | 4 th | UNIT NO-IV, Non -ferrous alloys: Aluminum alloys. | | | 1 st | Composition, property an usage of Duralmin. | | 10 th | 2 nd | y-alloy. Copper alloys: Composition, property. | | 10 | 3 rd | Usage of Copper Aluminum. | | | 4 th | Copper-Tin, Babbit, Phosperous bronze. | | | 1 st | Brass, Copper- Nickel. Low alloy materials like P-91. | | 11 th | 2 nd | P-22 for power plants and other high temperature services. | | 11 | 3 rd | High alloy materials like stainless steel grades of duplex. | | | 4 th | Super duplex materials & revision. | | 12 th | 1 st | Bearing and spring Materials: Classification. | | | 2 nd | Composition, properties of bearing materials. | | | 3 rd | Uses of Copper base, Tin Base, Lead base, Cadmium base bearing materials. | | | 4 th | Classification, composition, properties and uses of Iron base, Copper base spring material. | | Week | Class Day | Topics to be Covered | |------------------|-----------------|--| | 13 th | 1 st | UNIT NO -V,Polymers:Properties. | | | 2 nd | Application of thermosetting and thermoplastic. | | | 3 rd | Polymers, Properties of elastomers. | | | 4 th | Composites and Ceramics: Classification, composition properties. | | 14 th | 1 st | Composites and Ceramics: Classification. | | | 2 nd | Composites and Ceramics: composition properties. | | | 3 rd | composition properties. | | | 4 th | Uses of particulate based and fiber reinforced composites, | | 15 th | 1 st | Classification and uses of ceramics. | | | 2 nd | REVISION | | | 3 rd | REVISION | | | 4 th | REVISION | Sign of Faculty Sign of H.O.D.