

NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha)

LESSON PLAN

SUBJECT: FLUID MECHANICS AND FLUID POWER(AEPC207-TH:4)

Name of the Faculty- Er. Subhrajyoti Rout

Branch- Automobile Engineering Session- 2025-26

Semester- 3rd Examination- 2025 (W)

CHAPTER WISE DISTRIBUTION OF PERIODS

Unit	Name of the chapter as per the Syllabus	No. of Periods as per the Syllabus	No. of periods actually needed
I	PROPERTIES OF A FLUID AND HYDROSTATICS	9	12
II	KINEMATICS AND DYNAMICS OF FLUID MECHANICS	6	9
III	FLOW THROUGH ORIFICES AND NOTCHES, PIPES	9	11
IV	Turbines and Pumps	12	15
V	FLUID POWER	9	13
	Total	45	60

2000 03 2021

20.20/0x1

sign of the faculty Sign of H.O.D

Name of the programme: Diploma in AUTOMOBIL	Semester: 3rd	Name of the Teaching Faculty: Er.Subhrajyoti Rout		
		Academic Year: 2025-26 Examination: 2025 (W)		
Course Code: AEPC207 TH:4	Course Year: Second Year	No. of Classes Alloted Per Week :	4	
		Planned Classes Required to Complete the Course	60	
Week	Class Day	Topics to be Covered		
1 st	1 st	PROPERTIES OF A FLUID AND HYDROSTATICS: Definition of a fluid, classification of fluids		
	2 nd	various fluid properties such as density, specific weight, specific gravity		
	3 rd	viscosity and surface tension and state the units, fluid pressure, total pressure (hydrostatic force) and location of centre of pressure on vertical, horizontal		
	4 th	viscosity and surface tension and state the units, fluid pressure, total pressure (hydrostatic force) and location of centre of pressure on vertical, horizontal		
2 nd	1 st	inclined and curved surfaces by fluid, working of various measuring devices for pressure		
	2 nd	the principle of manometers of simple, differential and inverted types, principle of buoyancy and floatation.		
	3 rd	the principle of manometers of simple, differential and inverted types, principle of buoyancy and floatation.		
	4 th	Simple numericals on Manometer		
3 rd	1 st	Simple numericals on Manometer		
	2 nd	KINEMATICS AND DYNAMICS OF FLUID MECHANICS: Various types of flow, circulation and vorticity, stream-line		
	3 rd	path line and streak-line, various energies of fluid, law of conservation of mass		
	4 th	energy equation -Bernoulli's theorem		
4 th	1 st	the limitations of same-application of Bernoulli's equation		
	2 nd	the working of venturimeter, pitot tube, equation of flow rate and venturimeter	velocity with respect to	
	3 rd	pitot tube respectively, the working of flowmeter: current meter, S	Simple numericals.	
	4 th	FLOW THROUGH ORIFICES AND NOTCHES, PIPES:Definition —orificoefficient such as Cc, Cv, Cd	ce,orifice	
5 th	1 st	Relationship between orifice coefficients, weir and notch, Discharg and weir	ge over rectangular notch	
	2 nd	Triangular notch. Simple numericals.		

Week	Class Day	Topics to be Covered	
5 th	3 rd	triangular notch. Simple numericals.	
	4 th	Definition of a pipe. laws of fluid friction, Equation of loss of head through pipe due to friction	
6 th	1 st	fluid friction, Equation of loss of head through pipe due to friction, Darcy's formula and Chezy's formula, hydraulic gradient and total energy line	
	2 nd	fluid friction, Equation of loss of head through pipe due to friction, Darcy's formula and Chezy's formula, hydraulic gradient and total energy line	
	3 rd	Nozzle and its application, Power transmission through nozzle the condition of maximum power transmission through nozzle	
	4 th	Nozzle and its application, Power transmission through nozzle the condition of maximum power transmission through nozzle	
7 th	1 st	Expression for diameter of nozzle for maximum power transmission	
	2 nd	Expression for diameter of nozzle for maximum power transmission	
	3 rd	Turbines and Pumps:: Classification of hydraulic turbines	
	4 th	Selection of turbine on the basis of head and discharge available	
8 th	1 st	Selection of turbine on the basis of head and discharge available	
	2 nd	Construction and working principle of Pelton wheel	
	3 rd	Construction and working principle of Pelton wheel	
	4 th	Francis and Kaplan turbines. Draft tubes – types and construction, Concept of cavitation in turbines	
9 th	1 st	Francis and Kaplan turbines. Draft tubes – types and construction, Concept of cavitation in turbines	
	2 nd	Calculation of Work done, Power, efficiency of turbines. Simple numerical	
	3 rd	Calculation of Work done, Power, efficiency of turbines. Simple numerical	
	4 th	Calculation of Work done, Power, efficiency of turbines. Simple numerical	
10 th	1 st	Calculation of Work done, Power, efficiency of turbines. Simple numerical	
	2 nd	Centrifugal Pumps: Principle of working and applications	
	3 rd	Centrifugal Pumps: Principle of working and applications	
	4 th	Centrifugal Pumps: Principle of working and applications	
11 th	1 st	Types of casings and impellers, Concept of multistage, Priming and its methods	
	2 nd	Types of casings and impellers, Concept of multistage, Priming and its methods	
	3 rd	Manometric head, Work done, Manometric efficiency, Overall efficiency. Simple numericals	

Week	Class Day	Topics to be Covered	
11 th	4 th	Manometric head, Work done, Manometric efficiency, Overall efficiency. Simple numericals	
12 th	1 st	Manometric head, Work done, Manometric efficiency, Overall efficiency. Simple numericals	
	2 nd	Manometric head, Work done, Manometric efficiency, Overall efficiency. Simple numericals	
	3 rd	Reciprocating Pumps: Construction, working principle and applications of single and double acting reciprocating pumps	
	4 th	Reciprocating Pumps: Construction, working principle and applications of single and double acting reciprocating pumps	
13 th	1 st	Reciprocating Pumps: Construction, working principle and applications of single and double acting reciprocating pumps	
	2 nd	Concept of Slip, Negative slip, Cavitation and separation. Simple numericals	
	3 rd	Concept of Slip, Negative slip, Cavitation and separation. Simple numericals	
	4 th	Concept of Slip, Negative slip, Cavitation and separation. Simple numericals	
14 th	1 st	FLUID POWER: Definition of fluid power, classification	
	2 nd	FLUID POWER: Definition of fluid power, classification	
	3 rd	hydraulic power and pneumatic power, Hydraulic Systems -Basic principle of enclosed hydraulic system	
	4 th	hydraulic power and pneumatic power, Hydraulic Systems -Basic principle of enclosed hydraulic system	
15 th	1 st	Pascal's law, Oil hydraulic system – reservoir, filter pressure limiting valves, direction control valves	
	2 nd	Pascal's law, Oil hydraulic system – reservoir, filter pressure limiting valves, direction control valves	
	3 rd	flow control valves, actuators (linear and rotary), accumulator	
	4 th	hydraulic circuits - extension and retraction of linear actuator, motion of rotary actuator, holding a job, hydraulic press etc.	

2000000

sign of the faculty Sign of H.O.D