

NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha)

LESSON PLAN

SUBJECT: BASIC THERMAL ENGINEERING(AEPC209-TH:5)

Name of the Faculty- Er. Pradyumna Kumar Khilar

Branch- Automobile Engineering Session- 2025-26

Semester- 3rd Examination- 2025 (W)

CHAPTER WISE DISTRIBUTION OF PERIODS

Sl.No.	Name of the chapter as per the Syllabus	No. of Periods as per the Syllabus	No. of periods actually needed
1	Fundamentals of Thermodynamics	9	11
2	Laws of Thermodynamics	9	13
3	Properties & Processes of perfect gas	9	11
4	Gas and vapour Power Cycles	9	14
5	Fuels and Combustion	9	11
	Total Period:	45	60

Sign of the faculty

Sign of H.O.D

Name of the programme: Diploma in AUTOMOBILE ENGINEERING	Semester: 3rd	Name of the Teaching Faculty: Er.Pradyumna Kumar Khilar			
		Academic Year: 2025-26	Examination : 2025 (W)		
Course Code:	Course Year:	No. of Classes Alloted Per Week	4		
AEPC209	Second	Planned Classes Required to	60		
TH-5	Year	Complete the Course			
Week	Class Day	Topics to be Covered			
1 st	1 st	UNIT-I:Fundamentals of Thermodynamics(Introduction) Thermodynamic Systems (closed, open, isolated)			
	2 nd	Thermodynamic properties of a system (pressure, volume, temperature, entropy, enthalpy, Internal energy and units of measurement)			
	3 rd	Thermodynamic properties of a system (pressure, volume, temperature, entropy, enthalpy, Internal energy and units of measurement)			
	4 th	Intensive and extensive properties			
	1 st	Thermodynamic processes, path, cycle, state, path function, point function			
_ nd	2 nd	Thermodynamic Equilibrium			
2 nd	3 rd	Quasi-static Process			
	4 th	Energy and its sources, Work, heat and comparison between Work and heat			
3 rd	1 st	Mechanical Equivalent of Heat, Work transfer			
	2 nd	Displacement work			
	3 rd	Displacement work			
	4 th	UNIT-II:Laws of Thermodynamics(Introduction)			
	1 st	Zeroth law of thermodynamics, First law of thermodynamics, Limitations of First law of thermodynamics.			
4 th	2 nd	Applications of First law of Thermodynamics			
	3 rd	Steady flow energy equation and its application to turbine and compressor			
	4 th	Steady flow energy equation and its application to turbine and compressor			
5 th	1 st	Steady flow energy equation and its application to turbine and compressor			
	2 nd	Second law of thermodynamics, Clausius and Kelvin Plank statements			
	3 rd	Second law of thermodynamics, Clausius and Kelvin Plank statements			
	4 th	Second law of thermodynamics, Clausius and Kelvin Plank statements			
6 th	1 st	Application of second law in heat engine, heat pump, refrigerator, Efficiencies and C.O.P.			
	2 nd	Application of second law in heat engin C.O.P.	e, heat pump, refrigerator, Efficiencies and		

Week	Class Day	Topics to be Covered	
6 th	3 rd	Application of second law in heat engine, heat pump, refrigerator, Efficiencies and C.O.P.	
	4 th	Application of second law in heat engine, heat pump, refrigerator, Efficiencies and C.O.P.	
7 th	1 st	UNIT-III: Properties & Processes of perfect gas (Introduction)	
	2 nd	Laws of perfect gas, Boyle's law, Charle's law, Avogadro's law, Dalton's law of partial pressure, Guy lussac law.	
	3 rd	Laws of perfect gas, Boyle's law, Charle's law, Avogadro's law, Dalton's law of partial pressure, Guy lussac law.	
	4 th	General gas equation, characteristic gas constant, Universal gas constant.	
	1 st	General gas equation, characteristic gas constant, Universal gas constant.	
+h	2 nd	Specific heat of gas (Cp and Cv), Relation between Cp and Cv.	
8 th	3 rd	Specific heat of gas (Cp and Cv), Relation between Cp and Cv.	
	4 th	Enthalpy of a gas, Work done during a non- flow process	
9 th	1 st	Applications of first law of thermodynamics to various non flow processIsothermal, Isobaric, Isentropic and polytrophic process.	
	2 nd	Applications of first law of thermodynamics to various non flow processIsothermal, Isobaric, Isentropic and polytrophic process.	
	3 rd	Free expansion and throttling process.	
	4 th	UNIT-IV:Gas and vapour Power Cycles(Introduction)	
	1 st	Carnot cycle	
4.o th	2 nd	Carnot Cycle	
10 th	3 rd	Carnot Cycle	
	4 th	Stirling Cycle	
	1 st	Stirling Cycle	
th	2 nd	Ericsson Cycle	
11 th	3 rd	Ericsson Cycle	
	4 th	Air Standard Cycles, Otto Cycle	
	1 st	Air Standard Cycles, Otto Cycle	
12 th	2 nd	Air Standard Cycles, Diesel Cycle	
	3 rd	Dual Cycle	
	4 th	Dual Cycle	
13 th	1 st	Comparison of Otto, Diesel and Dual Cycles.	
	2 nd	UNIT-V:Fuels and Combustion(Introduction)	
	3 rd	Fuels, Exothermic and Endothermic reactions	

Week	Class Day	Topics to be Covered	
13 th	4 th	Heating values of fuel	
14 th	1 st	Heating values of fuel	
	2 nd	Different types of fuels, solid, liquid and gaseous fuels	
	3 rd	Different types of fuels, solid, liquid and gaseous fuels	
	4 th	Calorific Value – Higher and Lower Calorific Values	
15 th	1 st	Calorific Value – Higher and Lower Calorific Values	
	2 nd	Air – Fuel Ratio	
	3 rd	Stoichiometry	
	4 th	Octane number,Cetane number	

Jolog 2000

Sign of the faculty

Sign of H.O.D