

NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha)

LESSON PLAN

SUBJECT: ENGINEERING MECHANICS(TH-4)

Name Of The Faculty :- Er. KANHAI GUPTA

Branch :- EE/EEE Semester :- 1st

Session :- 2025-26 **Examination :-** 2025 (W)

CHAPTER WISE DISTRIBUTION OF PERIODS

Sl.No.	Name of the chapter as per the Syllabus	No. of periods actually needed
1	Unit – I Basics of mechanics and force system	15
2	Unit– II Equilibrium	12
3	Unit– III Friction	10
4	Unit– IV Centroid and centre of gravity	15
5	Unit – V Simple lifting machine	16
	Total Period:	68

Sign. of Faculty

M) 36/67/25

Sign. of H.O.D.

Name of the programme: Diploma in electrical and Electrical & Electronics Engineering	Semester: 1st	Name of the Teaching Faculty: Er. KANHAI GUPTA	
		Academic session: 2025-26 Examination	on : 2025 (W)
Course Code:TH 4(b)	Course Year: First Year	No. of Classes Alloted Per Week :	4
		Planned Classes Required to Complete the Course	68
	1 st	Basics of mechanics and force system Significance and relevance of Mechanics, Applied mechanics, St	atics, Dynamics.
, st	2 nd	Space, time, mass, particle, flexible body and rigid body.	
1 st	3 rd	Scalar and vector quantity, Units of measurement (SI units) - Fu derived units	ndamental units and
	4 th	Scalar and vector quantity, Units of measurement (SI units) - Fu derived units	ndamental units and
	1 st	Force – unit, representation as a vector and by Bow's notation,	
2 nd	2 nd	characteristics and effects of a force, Principle of transmissibilit	y of force,
	3 rd	Force system and its classification.	
	4 th	Resolution of a force - Orthogonal components of a force	
	1 st	moment of a force, Varignon's Theorem.	
3 rd	2 nd	Composition of forces – Resultant, analytical method for detern for concur- rent, non-concurrent and parallel co-planar force sy	
	3 rd	Composition of forces – Resultant, analytical method for detern for concur- rent, non-concurrent and parallel co-planar force sy	
	4 th	Composition of forces – Resultant, analytical method for deterr for concur- rent, non-concurrent and parallel co-planar force sy	
	1 st	Law of triangle, parallelogram and polygon of forces.	
	2 nd	Law of triangle, parallelogram and polygon of forces.	
4 th	3 rd	Law of triangle, parallelogram and polygon of forces.	
	4 th	Equilibrium Equilibrium and Equilibrant, Free body and Free body diagram	
	1 st	Analytical and graphical meth- ods of analysing equilibrium	
5 th	2 nd	Lami's Theorem – statement and explanation, Application for vaproblems.	arious engineering
	3 rd	Lami's Theorem – statement and explanation, Application for vaproblems.	arious engineering
	4 th	Types of beam, supports (simple, hinged, roller and fixed) and lo (vertical and inclined point load, uniformly distributed load, cou	
6 th	1 st	Types of beam, supports (simple, hinged, roller and fixed) and loads acting on beam (vertical and inclined point load, uniformly distributed load, couple)	

Week	Class Day	Topics to be Covered	
6 th	2 nd	Types of beam, supports (simple, hinged, roller and fixed) and loads acting on beam (vertical and inclined point load, uniformly distributed load, couple),	
	3 rd	Types of beam, supports (simple, hinged, roller and fixed) and loads acting on beam (vertical and inclined point load, uniformly distributed load, couple),	
	4 th	Beam reaction for cantilever, simply supported beam with or without overhangsubjected to combination of Point load and uniformly distributed load.	
7th	1 st	Beam reaction for cantilever, simply supported beam with or without overhang – subjected to combination of Point load and uniformly distributed load.	
	2 nd	Beam reaction graphically for simply supported beam subjected to vertical point loads only.	
	3 rd	REVISION	
	4 th	Friction Friction and its relevance in engineering, co-efficient of friction,	
	1 st	Friction and its relevance in engineering, co-efficient of friction,	
8 th	2 nd	Types and laws of friction, limiting equilibrium, limiting friction,	
	3 rd	co-efficient of friction, angle of friction.	
	4 th	Angle of repose, relation between co-efficient of friction and angle of friction.	
9 th	1 st	Equilibrium of bodies on level surface subjected to force parallel and inclined to plane.	
	2 nd	Equilibrium of bodies on level surface subjected to force parallel and inclined to plane.	
9	3 rd	Equilibrium of bodies on inclined plane subjected to force parallel to the plane only.	
	4 th	Equilibrium of bodies on inclined plane subjected to force parallel to the plane only.	
	1 st	REVISION	
10 th	2 nd	Centroid and centre of gravity Centroid of geometrical plane figures (square, rectangle, triangle, circle, semi-circle, quarter circle)	
	3 rd	Centroid and centre of gravity Centroid of geometrical plane figures (square, rectangle, triangle, circle, semi-circle, quarter circle)	
	4 th	Centroid and centre of gravity Centroid of geometrical plane figures (square, rectangle, triangle, circle, semi-circle, quarter circle)	
11 th	1 st	Centroid and centre of gravity Centroid of geometrical plane figures (square, rectangle, triangle, circle, semi-circle, quarter circle)	

Week	Class Day	Topics to be Covered
11 th	2 nd	Centroid of composite figures composed of not more than three geometrical figures
	3rd	Centroid of composite figures composed of not more than three geometrical figures
	4th	Centroid of composite figures composed of not more than three geometrical figures
12 th	1st	Centroid of composite figures composed of not more than three geometrical figures
	2nd	Centre of Gravity of simple solids (Cube, cuboid, cone, cylinder, sphere, hemisphere) Centre of Gravity of composite solids composed of not more than two simple solids
	3rd	Centre of Gravity of simple solids (Cube, cuboid, cone, cylinder, sphere, hemisphere) Centre of Gravity of composite solids composed of not more than two simple solids
	4th	Centre of Gravity of simple solids (Cube, cuboid, cone, cylinder, sphere, hemisphere) Centre of Gravity of composite solids composed of not more than two simple solids
13th	1 st	Centre of Gravity of simple solids (Cube, cuboid, cone, cylinder, sphere, hemisphere) Centre of Gravity of composite solids composed of not more than two simple solids
	2 nd	Centre of Gravity of simple solids (Cube, cuboid, cone, cylinder, sphere, hemisphere) Centre of Gravity of composite solids composed of not more than two simple solids
	3 rd	Centre of Gravity of simple solids (Cube, cuboid, cone, cylinder, sphere, hemisphere) Centre of Gravity of composite solids composed of not more than two simple solids
	4 th	REVISION
	1 st	Simple lifting machine Simple lifting machine, load, effort
14th	2 nd	Simple lifting machine, load, effort
	3 rd	mechanical advantage, applications and advantages.
	4 th	Velocity ratio, efficiency of machines, law of machine.
15th	1 st	Velocity ratio, efficiency of machines, law of machine.
	2 nd	Velocity ratio, efficiency of machines, law of machine.
	3rd	REVISION
	4th	Ideal machine, friction in machine, maximum Mechanical advantage and efficiency, reversible and non-reversible machines, conditions for reversibility
16th	1 st	Ideal machine, friction in machine, maximum Mechanical advantage and efficiency, reversible and non-reversible machines, conditions for reversibility

Week	Class Day	Topics to be Covered	
16th	2 nd	Ideal machine, friction in machine, maximum Mechanical advantage and efficiency,	
		reversible and non-reversible machines, conditions for reversibility	
	3 rd	Velocity ratios of Simple axle and wheel, Differential axle and wheel, Worm and worm	
		wheel, Single purchase and double purchase crab winch	
	4 th	Velocity ratios of Simple axle and wheel, Differential axle and wheel, Worm and worm	
		wheel, Single purchase and double purchase crab winch	
17th	1 st	Simple screw jack, Weston's differential pulley block, geared pulley block.	
	2 nd	Simple screw jack, Weston's differential pulley block, geared pulley block.	
	3rd	REVISION	
	4th	REVISION	

@. 944 2025

Sign. of Faculty

M) 30/07/25

Sign. of H.O.D.