

NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha)

LESSON PLAN

SUBJECT: TH-2 (STRUCTURAL DESIGN -II)

Name Of The Faculty :- Er. Satyajit Panda

Branch :- Civil Engineering Semester :- 5th

Academic Year: 2025-26 Examination: - 2025 (w)

CHAPTER WISE DISTRIBUTION OF PERIODS

SI.No.	Name of the chapter as per the Syllabus		No. of periods actually needed
1	Introduction:		7
2	Structural Steel Fasteners and Connections.		12
3	Design of Steel tension Members		12
4	Design of Steel Compression members.		12
5	Design of Steel beams:		12
6	Design of Tubular Steel Structures		9
7	Design of Masonry Structures		11
	Total Period:	60	75

Sign of Faculty

Sign of H.O.D.

Name of the programme: Diploma in CIVIL ENGINEERING	Semester: 5th	Name of the Teaching Faculty: Er. Satyajit Panda			
		Academic Year: 2025-26 Examination: 2025 (W)			
Course Code:	Course Year:	No. of Classes Alloted Per Week :	5		
TH-2	Third Year	Planned Classes Required to Complete the Course	75		
Week	Class Day	Topics to be Covered			
1 st	1 st	1.1 Common steel structures, Advantages & disadvantages of steel structures.			
	2 nd	1.2 Types of steel, properties of structural steel. 1.3 Rolled steel sections, special considerations in steel design.			
	3 rd	1.4 Loads and load combinations.1.5 Structural analysis and design philosophy			
	4 th	1.4 Loads and load combinations.1.5 Structural analysis and design philosophy			
	5 th	1.6 Brief review of Principles of Limit State design.			
	1 st	REVISION OF UNIT 1			
	2 nd	REVISION OF UNIT 1			
2 nd	3 rd	2.1 Bolted Connections2.1.1 Classification of bolts, advantages and disadvantages of bolted connections.			
	4 th	2.1.2 Different terminology, spacing and edge distance of bolt holes.			
	5 th	2.1.3 Types of bolted connections. 2.1.4 Types of action of fasteners, assumptions and principles of design.			
3 rd	1 st	2.1.3 Types of bolted connections.2.1.4 Types of action of fasteners, assumptions and principles of design.			
	2 nd	2.1.5 Strength of plates in a joint, strength of bearing type bolts (shear capacity& bearing capacity), reduction factors, and shear capacity of HSFG			
	3 rd	2.1.6 Analysis & design of Joints using bearing type and HSFG bolts (except eccentric load and prying forces)			
	4 th	2.1.7 Efficiency of a joint. 2.2 Welded Connections:			
	5 th	2.1.7 Efficiency of a joint. 2.2 Welded Connections:			

4 th	1 st	2.2.1 Advantages and Disadvantages of welded connection2.2.2 Types of welded joints and specifications for welding			
	2 nd	2.2.3 Design stresses in welds. 2.2.4 Strength of welded joints			
	3 rd	2.2.3 Design stresses in welds. 2.2.4 Strength of welded joints			
	4 th	REVISION OF UNIT 2			
	5 th	REVISION OF UNIT 2			
	1 st	3.1 Common shapes of tension members.			
	2 nd	3.2 Maximum values of effective slenderness ratio.			
5 th	3 rd	3.4 Analysis and Design of tension members.(Considering strength only and concept of block shear failure.)			
	4 th	3.4 Analysis and Design of tension members.(Considering strength only and concept of block shear failure.)			
	5 th	3.4 Analysis and Design of tension members.(Considering strength only and concept of block			
6 th	1 st	3.4 Analysis and Design of tension members.(Considering strength only and concept of block shear failure.)			
	2 nd	3.4 Analysis and Design of tension members.(Considering strength only and concept of block shear failure.)			
	3 rd	3.4 Analysis and Design of tension members. (Considering strength only and concept of block shear failure.)			
	4 th	Numericals practice			
	5 th	Numericals practice			
7 th	1 st	REVISION OF UNIT 3			
	2 nd	4.1 Common shapes of compression members.			
	3 rd	4.2 Buckling class of cross sections, slenderness ratio			
	4 th	4.2 Buckling class of cross sections, slenderness ratio			
	5 th	4.2 Buckling class of cross sections, slenderness ratio			
8 th	1 st	4.3 Design compressive stress and strength of compression members.			
	2 nd	4.3 Design compressive stress and strength of compression members.			
	3 rd	4.4 Analysis and Design of compression members (axial load only).			

8 th	4 th	4.4 Analysis and Design of compression members (axial load only).		
	5 th	4.4 Analysis and Design of compression members (axial load only).		
9 th	1 st	Numericals practice		
	2 nd	Numericals practice		
	3 rd	REVISION OF UNIT 4		
	4 th	REVISION OF UNIT 4		
	5 th	5.1 Common cross sections and their classification.		
	1 st	5.1 Common cross sections and their classification.		
	2 nd	5.2 Deflection limits, web buckling and web crippling.		
10 th	3 rd	5.2 Deflection limits, web buckling and web crippling.		
	4 th	5.2 Deflection limits, web buckling and web crippling.		
	5 th	5.2 Deflection limits, web buckling and web crippling.		
	1 st	Numericals practice		
	2 nd	Numericals practice		
11 th	3 rd	Numericals practice		
	4 th	Numericals practice		
	5 st	5.3 Design of laterally supported beams against bending and shear.		
	1 st	5.3 Design of laterally supported beams against bending and shear.		
	2 nd	5.3 Design of laterally supported beams against bending and shear.		
12 th	3 rd	5.3 Design of laterally supported beams against bending and shear.		
	4 th	5.3 Design of laterally supported beams against bending and shear.		
	5 th	REVISION OF UNIT 5		
13 th	1 st	REVISION OF UNIT 5		
	2 nd	6.1 Round Tubular Sections, Permissible Stresses		
	3 rd	6.1 Round Tubular Sections, Permissible Stresses		
	4 th	6.2 Tubular Compression & Tension Members		
	5 th	6.2 Tubular Compression & Tension Members		
	1 st	6.2 Tubular Compression & Tension Members		
14 th	2 nd	6.3 Joints in Tubular trusses		
	3 rd	6.3 Joints in Tubular trusses		

14 th	4 th	REVISION OF UNIT 6		
	5 th	REVISION OF UNIT 6		
15 th	1 st	7.1 Design considerations for Masonry walls & Columns, Load Bearing & No Load Bearing walls, Permissible stresses, Slenderness Ratio, Effective Length Height & Thickness.		
	2 nd	7.1 Design considerations for Masonry walls & Columns, Load Bearing & Non-Load Bearing walls, Permissible stresses, Slenderness Ratio, Effective Length, Height & Thickness.		
	3 rd	REVISION OF UNIT 7		
	4 th	Previous Question Answer Discussion		
	5 th	Previous Question Answer Discussion		

S. Panda 10/07/2025

Sign of Faculty

Sign of H.O.D.

