

NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha)

LESSON PLAN

SUBJECT: CEP203 TH-3 (MECHANICS OF MATERIALS)

Name Of The Faculty :- Er. Kumar Swatiranjan

Branch :- Civil Engineering Semester :- 3rd

Academic Year: 2025-26 Examination: - 2025 (w)

CHAPTER WISE DISTRIBUTION OF PERIODS

SI.No.	Name of the chapter as per the Syllabus	No. of Periods as per the Syllabus	No. of periods actually needed
1	Centre of Gravity and Moment of Inertia	8	8
2	Simple Stresses and Strains	12	15
3	Shear Force and Bending Moment	10	14
4	Bending and Shear Stresses in beams	9	13
5	Columns	6	10
	Total Period:	45	60

Sign of Faculty

Sign of H.O.D.

Name of the programme: Diploma in CIVIL ENGINEERING	Semester: 3rd	Name of the Teaching Faculty: Er. Kumar Swatiranjan		
		Academic Year: 2025-26 Examination	26 Examination : 2025 (W)	
Course Code: CEP205 TH-3	Course Year: Second Year	No. of Classes Alloted Per Week :	4	
		Planned Classes Required to Complete the Course	60	
Week	Class Day	Topics to be Covered		
1 st	1 st	UNIT-I:Centre of Gravity and Moment of Inertia Definition of centre of gravity -Centre of gravity of of Symmetrical shapes (solid / hollow square, rectangular, circular, I Sections.		
	2 nd	Moment of inertia (M.I.): Definition, M.I. of plane lamina, Radius of gyration, section mod- ulus, Parallel and Perpendicular axes theorems (without derivations).		
	3 rd	M.I. of rectangle, square, circle, semicircle, quarter circle and triangle section (without derivations).		
	4 th	M.I. of symmetrical and unsymmetrical I-section, Channel section.		
2 nd	1 st	M.I. of T-section, Angle section, Hollow sections.		
	2 nd	M.I. of built up sections about centroidal axes and any other reference axis.		
	3 rd	Polar Moment of Inertia of solid circular sections.		
	4 th	Polar Moment of Inertia of solid circular sections.		
3 rd	1 st	UNIT-2:Simple Stresses and Strains Definition of rigid, elastic and plastic bodies, deformation of elastic body under various forces, Definition of stress, strain, elasticity, Hook's law, Elastic limit, Modulus of elastic-ity.		
	2 nd	Type of Stresses-Normal, Direct, Bending and Shear and nature of stresses i.e. Tensile and Compressive stresses.		
	3 rd	Standard stress strain curve for tor steel bar under tension, Yield stress, Proof stress, Ultimate stress.		
	4 th	Strain at various critical points, Percentage elongation and Factor of safety.		
4 th	1 st	Deformation of body due to axial force, forces applied at intern	nediate sections.	
	2 nd	Maximum and minimum stress induced, Composite section und	der axial loading.	
	3 rd	Concept of temperature stresses and strain, Stress and strain developed due to temperature variation in homogeneous simple bar (no composite section).		
	4 th	Concept of temperature stresses and strain, Stress and strain developed due to temperature variation in homogeneous simple bar (no composite section).		

5 th	1 st	Longitudinal and lateral strain, Modulus of Rigidity, Poisson's ratio.
	2 nd	Biaxial and tri-axial stresses, volumetric strain, change in volume, Bulk modulus (Introduction only).
	3 rd	Relation between modulus of elasticity, modulus of rigidity and bulk modulus (without derivation).
	4 th	COMPLEX STRESSES AND STRAINS Principal stresses and strains: Occurrence of normal and tangential stresses - Concept of Principal stress and Principal Planes.
6 th	1 st	Major and minor principal stresses and their orientations – stresses on a given plane –shear and normal stress components on any inclined plane.
	2 nd	Mohr's circle and its use in solving problems on complex stresses - Numerical problems.
	3 rd	Mohr's circle and its use in solving problems on complex stresses - Numerical problems.
	4 th	UNIT-3:Shear Force and Bending Moment Types of supports, beams and loads.
	1 st	Concept and definition of shear force and bending moment.
7 th	2 nd	Relation between load, shear force and bending moment (without derivation).
	3 rd	Relation between load, shear force and bending moment (without derivation).
	4 th	Shear force and bending moment diagram for cantilever beams subjected to point loads.
8 th	1 st	Shear force and bending moment diagram for cantilever beams subjected to point loads.
	2 nd	Shear force and bending moment diagram for simply supported beams subjected to point loads.
	3 rd	Shear force and bending moment diagram for simply supported beams subjected to point loads.
	4 th	Shear force and bending moment diagram for simply supported beams subjected to point loads.
9 th	1 st	Shear force and bending moment diagram for uniformly distributed loads and couple (combination of any two types of loading).
	2 nd	Shear force and bending moment diagram for uniformly distributed loads and couple (combination of any two types of loading).
	3 rd	Shear force and bending moment diagram for uniformly distributed loads and couple (combination of any two types of loading).
	4 th	Shear force and bending moment diagram for uniformly distributed loads and couple (combination of any two types of loading).

10 th	1 st	Determination of point of contra flexure.
	2 nd	UNIT-4:Bending and Shear Stresses in beams
		Concept and theory of pure bending, assumptions, flexural equation (without
	3 rd	derivation. Bending stresses and their nature.
	3	
	4 th	Bending stress distribution diagram.
11 th	1 st	Concept of moment of resistance and simple numerical problems using flexural equation.
	2 nd	Concept of moment of resistance and simple numerical problems using flexural equation.
	3 rd	Shear stresss equation (without derivation).
	4 th	Relation between maximum and average shear stress for rectangular and circular section.
	1 st	Shear stress distribution diagram.
12 th	2 nd	Shear stress distribution for square, rectangular, circle, hollow, square, rectangular, circular.
	3 rd	Shear stress distribution for angle sections, channel section.
	4 th	Shear stress distribution for angle sections, channel section.
	1 st	I-section, T section. Simple numerical problems based on shear equation.
+h	2 nd	I-section, T section. Simple numerical problems based on shear equation.
13 th	3 rd	UNIT-5:Columns
		Concept of compression member
	4 th	Short and long column, Effective length, Radius of gy- ration, Slenderness ratio.
14 th	1 st	Types of end condition for columns, Buckling of axially loadedcolumns.
	2 nd	Euler's theory, assumptions made in Euler's theory and its limitations
	3 rd	Application of Eu- ler's equation to calculate buckling load.
	4 th	Application of Eu- ler's equation to calculate buckling load.
15 th	1 st	Rankine's formula and its application to calculate crippling load.
	2 nd	Rankine's formula and its application to calculate crippling load.
	3 rd	Concept of working load/safe load, design load and factor of safety.
	4 th	Concept of working load/safe load, design load and factor of safety.

Sign of H.O.D.