

NILASAILA INSTITUTE OF SCIENCE & TECHNOLOGY SERGARH-756060, BALASORE (ODISHA) (Approved by AICTE& affiliated to SCTE&VT, Odisha)

LESSON PLAN

SUBJECT: CEPC 207 TH-4 (GEOTECHNICAL ENGINEERING)

Name Of The Faculty :- Er.Jyotishree Sethi

Branch :- Civil Engineering Semester :- 3rd

Academic Year: 2025-26 Examination: - 2025 (w)

CHAPTER WISE DISTRIBUTION OF PERIODS

SI.No.	Name of the chapter as per the Syllabus	No. of Periods as per the Syllabus	No. of periods actually needed
1	Overview of Geology and Geotechnical Engineering	5	6
2	Physical and Index Properties of Soil	8	12
3	Permeability and Seepage	8	12
4	Compaction, Consolidation and stabilization of soil	8	10
5	Shear Strength of Soil	8	11
6	Bearing Capacity of Soil and Foundation	8	9
	Total Period:	45	60

J. sethi 10.01.25 Sign of Faculty

Sign of H.O.D.

Name of the programme: Diploma in CIVIL ENGINEERING	Semester: 3rd	Name of the Teaching Faculty: Er. Jyotoshree Sethi		
		Academic Year: 2025-26 Examination	on : 2025 (W)	
Course Code:	Course Year:	No. of Classes Alloted Per Week :	4	
CEPC 207 TH-4	Second Year	Planned Classes Required to Complete the Course	60	
Week	Class Day	Topics to be Covered		
1 st	1 st	1.Overview of Geology and Geotechnical Engineering Introduction of Geology, Branches of Geology, Importance of Geology for civil engineering structure and composition of earth.		
	2 nd	Definition of a rock, Classification based on their genesis (mode of origin), formation. Classification and engineering uses of igneous, sedimentary and metamorphic rocks.		
	3 rd	Definition of a rock, Classification based on their genesis (mode of origin), formation. Classification and engineering uses of igneous, sedimentary and metamorphic rocks.		
	4 th	Importance of soil as construction material in Civil engineer as foundation bed for structures.	ing structures and	
2 nd	1 st	Importance of soil as construction material in Civil engineer as foundation bed for structures.	ring structures and	
	2 nd	Revision of Unit-I		
	3 rd	2.Physical and Index Properties of Soil Soil as a three phase system, water content, determinent by oven drying method as per BIS code.	mination of water	
	4 th	Soil as a three phase system, water content, detern content by oven drying method as per BIS code.	mination of water	
3 rd	1 st	void ratio, porosity and degree of saturation, density inc Content, Percentage of air voids, Relation between the param	eters.	
	2 nd	void ratio, porosity and degree of saturation, density index.,air Content,Percentage of air voids,Relation between the parameters.		
	3 rd	void ratio, porosity and degree of saturation, density index.,air Content,Percentage of air voids,Relation between the parameters.		
	4 th	Unit weight of soil mass – bulk unit weight, dry unit weight, solids, saturated unit weight, submerged unit weight.	unit weight of	
	1 st	Unit weight of soil mass — bulk unit weight, dry unit weight, solids, saturated unit weight, submerged unit weight.	unit weight of	
4 th	2 nd	Determination of bulk unit weight and dry unit weight by core cutter and sand replacement method, Determination of specific gravity by pycnometer.		
	3 rd	Determination of bulk unit weight and dry unit weight by core cutter and sand replacement method, Determination of specific gravity by pycnometer.		
	4 th	Consistency of soil, Atterberg limits of consistency: Liquid I and shrinkage limit. Plasticity index.	imit, plastic limit	

5 th	1 st	Particle size distribution test and plotting of curve, Determination of effective diameter of soil, well graded and uniformly graded soils, BIS classification of soil.
	2 nd	REVISION OF UNIT -II
	3 rd	3.Permeability and Seepage Definition of permeability, Darcy's law of permeability, coefficient of permeability.
	4 th	Factors affecting permeability, determination of coefficient of permeability by constant head and falling head tests,
6 th	1 st	Factors affecting permeability, determination of coefficient of permeability by constant head and falling head tests,
	2 nd	Simple problems to determine coefficient of permeability.
	3 rd	Simple problems to determine coefficient of permeability.
	4 th	Simple problems to determine coefficient of permeability.
th	1 st	Determine coefficient of permeability. Seepage through earthen structures, seepage velocity.
	2 nd	Seepage velocity, seepage pressure, phreatic line, flow lines
7 th	3 rd	Application of flow net, (Concepts only No numerical problems). Effective stress, quick Sand
	4 th	REVISION OF UNIT - III
8 th	1 st	4.Compaction,Consolidation and stabilization of soil Concept of compaction, Standard and Modified proctor test as per IS code, Plotting of Compaction curve for determining: Optimum moisture content (OMC).
	2 nd	Maximum dry density (MDD), Zero air voids line. Factors affecting compaction, field methods of compaction – rolling, ramming and vibration.
	3 rd	Consoildation, Difference between compaction and consolidation. Terzaghi's Model analogy of compression/springs showing the process of consolidation, Field implications
	4 th	Concept of soil stabilization, necessity of soil stabilization, different methods of soil stabilization. California bearing ratio (CBR) test - Meaning and Utilization in Pavement Construction

9 th	1 st	Necessity of site investigation and soil exploration: Types of exploration, criteria for decidingthe location and number of test pits and bores. Field identification of soil – dry strength test, dilatancy test and toughness test.
	2 nd	Necessity of site investigation and soil exploration: Types of exploration, criteria for decidingthe location and number of test pits and bores. Field identification of soil – dry strength test, dilatancy test and toughness test.
	3 rd	Revision of Unit-IV
	4 th	5.Shear Strength of Soil Shear failure of soil-General,local and punching shear, concept of shear strength of soil.
10 th	1 st	Components of shearing resistance of soil – cohesion, internal friction.
	2 nd	Mohr-Coulomb failure theory, Strength envelope, strength equation for purely cohesive and cohesion less soils.
	3 rd	Direct shear, triaxial and vane shear test laboratory methods
	4 th	NUMERICAL PROBLEM SOLVING CLASS
	1 st	REVISION OF UNIT -V
11 th	2 nd	6.Bearing Capacity of Soil and Foundation Bearing capacity and theory of earth pressure. Concept of bearing capacity.
	3 rd	Bearing Capacity of Soil and Foundation capacity and theory of earth pressure. Concept of bearing capacity. Bearing
	4 th	Concept of bearing capacity, ultimate bearing capacity, safe bearing capacity and allowable bearing pressure.
	1 st	Concept of bearing capacity, ultimate bearing capacity, safe bearing capacity and allowable bearing pressure.
12 th	2 nd	Introduction to Terzaghi's analysis and assumptions.
	3 rd	Introduction to Terzaghi's analysis and assumptions.
	4 th	Effect of water table on bearing capacity.
	1 st	Effect of water table on bearing capacity.
13 th	2 nd	NUMERICAL PROBLEM SOLVING CLASS
13	3 rd	NUMERICAL PROBLEM SOLVING CLASS
	4 th	REVISION OF UNIT -VI
14 th	1 st	7.Field methods for determination of bearing capacity Plate load and Standard Penetration Test. Test procedures as per IS:1888 & IS:2131. Definition of earth pressure, Active and Passive earth pressure for no surcharge condition
	2 nd	Definition of earth pressure, Active and Passive earth pressure for no surcharge condition
	3 rd	Definition of earth pressure, Active and Passive earth pressure for no surcharge condition.
	4 th	Coefficient of earth pressure, Rankine's theory and assumptions made for non-cohesive Soils.

15 th	1 st	Coefficient of earth pressure, Rankine's theory and assumptions made for non-cohesive Soils.
	2 nd	Type of foundations-
		Shallow foundation and Deep foundation
	3 rd	REVISION OF UNIT -VII
	4 th	Previous Year question Answer Discussion

J. sethi 10.02.25

Sign of Faculty

Sign of H.O.D.