DEPARTMENT OF ELECTRICAL ENGINEERING

QUESTION BANK ON ANALOG ELECTRONICS

(4th Semester)

1. The forbidden charge in germanium at $0^{\circ} \mathrm{K}$ is
(a) 0.785 eV
(b) 1.21 eV
(c) 1.00 eV
(d) 0.01 eV
2. One electron volt equals to
(a) 01.60×10^{-19}
(b) 09.11×10^{-31}
(c) 19.40×10^{-10}
(d) 01.16×10^{-19}
3. Which device is a combination of $\mathrm{P}-\mathrm{N}$ junction diode and two resistors?
(a) SCR
(b) SCS
(c) UJT
(d) FET
4. The α of the transistor is
(a) A measure of its sensitivity
(b) A measure of quality
(c) A meas ure of thermal stability
(d) A mear ure of its noise immunity
5. Which of the following is also known as reverse blocking triode thyristor?
(a) Triac
(b) Diac
(c) SCR
(d) UJT
6. In germanium the majority of electrons are
(a) $1.22 \mathrm{~m}^{2} / \mathrm{Vs}$
(b) $1.44 \mathrm{~m}^{2} / \mathrm{Vs}$
(c) $1.66 \mathrm{~m}^{2} / \mathrm{Vs}$
(d) $1.88 \mathrm{~m}^{2} / \mathrm{Vs}$
7. While plotting the V-I characteristics of semiconductor diode, the voltage is plotted along horizontal axis and the current along the vertical axis because
(a) The voltage and currents are independent variables
(b) The voltage and currents are dependent variables
(c) The voltage is dependent and the current is independent variable
(d) The voltage and the current are dependent variables
8. In ordertoincrease the recombination rate in silicon PN junction device \qquad is diffused.
(a) Aluminum
(b) Silver
(c) Indium
(d) Gold
9. One electron volt equals to
(a) 1.620×10^{-19}
(b) 1.602×10^{-19}
(c) 1.620×10^{-18}
(d) 1.602×10^{-18}
10. During IC fabrication, the chemical reaction involved in epitaxial growth takes place at a temperature of about
(a) $500^{\circ} \mathrm{C}$
(b) $1000^{\circ} \mathrm{C}$
(c) $1200{ }^{\circ} \mathrm{C}$
(d) $1500{ }^{\circ} \mathrm{C}$
11. If the $P N$ junction is abrupt, the capacitance varies as
(a) Square root of reverse bias
(b) Square of reverse bias
(c) Cube root of reverse bias
(d) Cube of reverse bias
12. Match list I and list II and select the correct one using the codes given below.

List I

P. Resistance
Q. Diode
R. Triode
S. PN junction

List II

1. Current noise
2. Partition noise
3. Shot noise
4. Johns on noise
(a) $\mathrm{P}-(4), \mathrm{Q}-(1), \mathrm{R}-(2), \mathrm{S}-(3)$
(b) $\mathrm{P}-(2), \mathrm{Q}-(3), \mathrm{R}-(1), \mathrm{S}-$ (4)
(c) $\mathrm{P}-(1), \mathrm{Q}-(2), \mathrm{R}-(3), \mathrm{S}-(4)$
(d) P-(4), Q-(3), R- (2), S- (1)
5. In a semiconductor diode, the time constant equals to
(a) Value of majority carrier lifetime
(b) Value of minority carrier lifetime
(c) Diffusion capacitance time constant
(d) Zero
6. A Triac has
(a) 2 layers
(b) 3 layers
(c) 4 layers
(d) 5 layers
7. Thyristors can be used to perform
(a) Rectification
(b) Inversion
(c) Regulation
(d) All of the above
8. Normal biasing of transistor is
(a) Forward bias the Emitter-Base and reverse bias the Collector-Base
(b) Forward bias both the Emitter-Base and Collector-Base
(c) Reverse bias both the Emitter-Base and Collector-Base
(d) Reverse bias both Emitter-Base and forward bias the Collector-Base
9. With reference to the current amplification factor of transistor
(a) α is greater than β
(b) α is smaller than β
(c) α and β are equal
(d) None of the above
10. For small values of drain to source voltage, JFET behaves like a
(a) Diode
(b) Capacitor
(c) Inverter
(d) Resistor
11. A thyristor is fabricated using
(a) Silicon
(b) Germanium
(c) Gallium arsenide
(d) Indium oxide
12. An SCR is a semiconductor device, which consists of
(a) 4 PN junctions
(b) 3 PN junctions
(c) 2 PN junctions
(d) 1 PN junction
13. Input impedance of MOSFET is
(a) Less than BJT but more than FET
(b) More than BJT but less than FET
(c) More than BJT and FET
(d) Less than BJT and FET
14. When a transistor is connected in common collector mode, then
(a) Input is in between Base and Emitter
(b) Input is in between Base and Collector
(c) Input is in between Emitter and Collector
(d) Input is in between Collector short-circuited
15. In general, a shell contains a maximum of ——_ electrons.
(a) $2 n$
(b) $2 n^{2}$
(c) $2 \mathrm{n}-1$
(d) $2 \mathrm{n}+1$
16. The holding current I_{H} of the SCR is
(a) Inversely proportional to the temperature
(b) Directly proportional to the temperature
(c) Remains unaffected by variation in temperature
(d) None of the above
17. Which one of the following possesses negative resistance characteristics?
(a) Schottky diode
(b) Tunnel diode
(c) PN junction diode
(d) Hot-carrier diode
18. As the temperature increases in a semiconductor, the densities of the electrons and holes
(a) Increase
(b) Decrease
(c) Become equal
(d) Can't be defined
19. A glass is a/an
(a) Good conductor
(b) Semiconductor
(c) Insulator
(d) Resistive material
20. An ideal diode can be considered as an
(a) Amplifier
(b) Bi-stable switch
(c) Oscillator
(d) Fuse
21. Emission of a beta particle from an atom
(a) Increases the number of protons in an atom
(b) Increases the number of neutrons in an atom
(c) Decreases the number of protons in an atom
(d) Decreases the number of neutrons in an atom
22. A voltage regulator is based on the principle of
(a) Rectification
(b) Amplification
(c) Zener breakdown
(d) Avalanche breakdown
23. Which of the following doesn't have forbidden energy gap between valence band and conductor band?
(a) Conductor
(b) Insulator
(c) Semiconductor
(d) None of the above
24. An SCR is
(a) 3 layer, tri-junction device
(b) 3 layer, four-junction device
(c) 4 layer, tri-junction device
(d) 4 layer, four-junction device
25. An LED is made up of
(a) Phosphorescent material
(b) Germanium
(c) Silicon
(d) Gallium arsenide
26. The conductivity of the intrinsic semiconductor at absolute temperature is
(a) 1.1 eV
(b) 0.63 eV
(c) Zero
(d) Infinity
27. The region between the peak and valley points of the tunnel diode is called as
(a) Pinch-off region
(b) Saturation region
(c) Cut-off region
(d) Negative conduction region
28. Avalanche breakdown occurs when
(a) The forward current is excessive
(b) The forward bias exceeds a certain value
(c) The reverse bias exceeds a certain value
(d) The potential barrier is reduced to zero
29. Doping is a process of
(a) Purifying semiconductor material
(b) Increasing impurity percentage
(c) Removal of foreign atoms
(d) Increasing the bias potential
30. With reference to transistor which of the following is correct?
(a) $\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{E}}+\mathrm{I}_{\mathrm{B}}$
(b) $\mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{E}}$
(c) $\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}}$
(d) $I_{E}=I_{B}$
31. A Silicon-controlled switch is
(a) A unilateral device without a gate
(b) A unilateral device with 2 gates
(c) A bilateral device without a gate
(d) A bilateral device with 2 gates
32. The intrinsic stand-off ratio of UJT is
(a) Always equal to zero
(b) Always equal to unity
(c) Always greater than unity
(d) Always less than unity
33. Zener diode exhibits
(a) Avalanche breakdown
(b) Zener breakdown
(c) Both (a) \& (b)
(d) Neither (a) nor (b)
34. In a transistor, if the base current is 1 mA and collector current is 2 mA , then
(a) $\mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}$
(b) $\mathrm{I}_{\mathrm{E}}=2 \mathrm{~mA}$
(c) $\mathrm{I}_{\mathrm{E}}=3 \mathrm{~mA}$
(d) $\mathrm{I}_{\mathrm{E}}=4 \mathrm{~mA}$
35. A BJT has
(a) One PN junction
(b) Two PN junctions
(c) Three PN junctions
(d) Four PN junctions
36. The switching time of LED is in the order of
(a) 1 second
(b) 1 microsecond
(c) 1 millisecond
(d) 1 nanosecond
37. For a doped semiconductor material, the dynamic resistance is
(a) Small and can be neglected
(b) Large and can be neglected
(c) Small but cannot be neglected
(d) Large but cannot be neglected
38. \qquad is an example of acceptor material.
(a) Gallium
(b) Arsenide
(d) Bismuth
(d) Antimony
39. The β value of a transistor can be determined from the curve plotted between
(a) $V_{B E}$ and I_{E} for constant $V_{C E}$
(b) $V_{B E}$ and I_{C} for constant $V_{C E}$
(c) $V_{C E}$ and I_{E} for constant I_{B}
(d) $V_{C E}$ and I_{C} for constant I_{B}
40. When a semiconductor is heavily doped in a range of 10^{17} to 10^{18} impurity atoms $/ \mathrm{cm}^{3}$, then it behaves as
(a) Intrinsic semiconductor
(b) Extrinsic semiconductor
(c) Simply as semiconductor
(d) Degenerative semiconductor
41. The DC current gain of a transistor is
(a) Always positive and greater than unity
(b) Always positive and less than unity
(c) Always positive and equal to unity
(d) Always positive and equal to infinity
42. The Collector to Base with Emitter open current, a transistor is extremely temperature dependent because
(a) It is made up of free electrons and holes
(b) It is made up of thermally generated majority carrier
(c) It is made up of thermally generated minority carrier
(d) It is made up of free electrons alone
43. Diac can be analyzed by imaging it as
(a) Two diodes connected in series
(b) Two diodes connected in parallel
(c) Two diodes connected in anti-parallel connection
(d) One transistor and a diode connected parallelly
44. Graphite is a
(a) Conductor
(b) Insulator
(c) Semiconductor
(d) None of these
45. Tunnel diode, with its negative resistance characteristics can be employed for
(a) Current amplification
(b) Voltage amplification
(c) Power amplification
(d) All of the above
46. Thermistor is a device whose resistance
(a) Decreases proportionally with increase in temperature
(b) Decreases exponentially with increase in temperature
(c) Increases proportionally with increase in temperature
(d) Increases exponentially with increase in temperature
47. Capacitive effects are exhibited by PN junctions when they are
(a) Forward biased
(b) Reverse biased
(c) Either forward or reverse biased
(d) Neither forward nor reverse biased
48. Which of the following elements is the poorest conductor of heat?
(a) Sodium
(b) Lead
(c) Zinc
(d) Mercury
49. What is the type of capacitance effect exhibited by the PN junction, when it is reverse biased?
(a) Transition capacitance
(b) Diffusion capacitance
(c) Space charge capacitance
(d) Drift capacitance
50. Localized hot spots and device destruction can take place in power transistors due to
(a) Avalanche breakdown
(b) Primary breakdown
(c) Second breakdown
(d) Quasi-saturation breakdown
51. Recombination of electrons and holes takes place when
(a) An electron falls into a hole
(b) A positive ion and a negative ion bond together
(c) Avalanche electron becomes a conduction electron
(d) An atom is formed
52. The power consumption of an LCD as compared to an LED is
(a) Same
(b) More
(c) Less
(d) Can't be defined
53. When a photodiode is reverse biased, and kept in a dark room, the current flowing through the device corresponds to
(a) Zero current
(b) Maximum current the device can hold
(c) Normal current that flows through the device
(d) Reverse saturation current
54. If an atom has an atomic number of 6 , then it has
(a) 3 electrons \& 3 protons
(b) 4 electrons \& 2 protons
(c) 2 electrons \& 4 protons
(d) 6 electrons \& 6 protons
55. Semiconductors are
(I) Ohmic as they obey Ohm's law
(II) Bipolar
(a) Only I is true
(b) Only II is true
(c) Both I \& II are true
(d) Both I \& II are false
56. An SCR can be constructed using
(a) One PNP and one NPN transistor
(b) Two PNP transistors
(c) Two NPN transistors
(d) All of the above
57. The current amplification factor of α of a transistor is always
(a) Less than 1
(b) Greater than 1
(c) Equal to 1
(d) None of these
58. Match the following
P. SCR
(I) Low current SCR without gate
Q. Triac
(II) Low current SCR with gate
R. Schottky diode
(III) Uni-directional
S. SCS
(IV) Bi-directional
(a) P-IV, Q-III, R-I, S-II
(b) P-I, Q-II, R-III, S-IV
(c) P-III, Q-IV, R-I, S-II
(d) P-I, Q-IV, R-II, S-III
59. Silicon is appreciably employed as a base material compared to germanium while manufacturing Zener diode since
(a) Silicon is abundantly available
(b) It is costlier
(c) It has low current capability
(d) It has high temperature capability
60. The input impedance of FET
(a) Is less than $10 \mathrm{k} \Omega$
(b) Is greater than $10 \mathrm{M} \Omega$
(c) Falls within a range between $10 \mathrm{k} \Omega$ and 10 $\mathrm{M} \Omega$
(d) Is less than $1 \mathrm{k} \Omega$
61. An excited electron in an atom returns to the ground state
(a) Always in one jump
(b) In one or more jumps
(c) Always in two jumps
(d) Always in three jumps
62. Which one of the following pair is correctly matched?
(a) Mass spectroscopy - Chadwick
(b) Atomic number - Moseley
(c) Neutron - Millikan
(d) Measurement of charge of an electron - Aston
63. Impact ionization is a process of liberation of free electrons by breaking
(a) Metallic bond
(b) Ionic bond
(c) Covalent bond
(d) van der Waals bond
64. A forward biased diode
(a) Acts as an open switch
(b) Offers high resistance
(c) Has a large voltage drop
(d) Conducts current easily
65. UJT can be used as
(a) Oscillator
(b) Amplifier
(c) Oscillator and amplifier
(d) Either as oscillator or amplifier
66. In a Zener diode
(a) $\mathrm{P} \& \mathrm{~N}$ regions are lightly doped
(b) The depletion region is wide
(c) $\mathrm{P} \& \mathrm{~N}$ regions are heavily doped
(d) The junction field current is small
67. Which of the following statements are correct?
68. In semiconductor, the mobility of electrons is more than that of holes
69. In semiconductor, when temperature increases, the resistivity also increases
70. Metal has positive TCR
71. In metals, thermal conductivity is inversely proportional to electrical conductivity at constant temperature
(a) 1,2,3
(b) 1,2, 4
(c) $2,3,4$
(d) $1,3,4$
72. The atomic number of silicon is
(a) 14
(b) 16
(c) 18
(d) 12
73. The common method of making PN junction is known as
(a) Diffusing
(b) Alloying
(c) Doping
(d) Biasing
74. As compared to PNP transistor, NPN transistors are preferred due to
(a) Economical
(b) Simple operating mechanism
(c) Consumes less bias voltage
(d) Better high frequency response
75. In tunnel diode, the impurity concentration is in the order of
(a) 1 part in 10^{10} parts
(b) 1 part in 10^{6} parts
(c) 1 part in 10^{9} parts
(d) 1 part in 10^{3} parts
76. The transport factor of common emitter circuit is given as
(a) $\Delta \mathrm{I}_{\mathrm{C}} / \Delta \mathrm{I}_{\mathrm{E}}$
(b) $\Delta \mathrm{I}_{\mathrm{C}} / \Delta \mathrm{I}_{\mathrm{B}}$
(c) $\Delta \mathrm{I}_{\mathrm{E}} / \Delta \mathrm{I}_{\mathrm{B}}$
(d) $\Delta \mathrm{I}_{\mathrm{C}}=\Delta \mathrm{I}_{\mathrm{E}}+\Delta \mathrm{I}_{\mathrm{B}}$
77. The dynamic resistance of diode is
(a) Constant and independent of operating voltage
(b) Constant and dependent on operating voltage
(c) Not a constant and independent of operating voltage
(d) Not a constant and dependent on operating voltage
78. The carrier mobility in a semiconductor is found to be $0.4 \mathrm{~m}^{2} / V_{\mathrm{s}}$. Its diffusion constant at 300 K will be
(a) $0.43 \mathrm{~m}^{2} / \mathrm{s}$
(b) $0.16 \mathrm{~m}^{2} / \mathrm{s}$
(c) $0.04 \mathrm{~m}^{2} / \mathrm{s}$
(d) $0.01 \mathrm{~m}^{2} / \mathrm{s}$
79. Which diode is otherwise known as ESAKI diode?
(a) PIN diode
(b) Schottky barrier diode
(c) GUNN diode
(d) Tunnel diode
80. The Hall coefficient of an intrinsic semiconductor is
(a) Positive under all conditions
(b) Negative under all conditions
(c) Zero under all conditions
(d) Zero at $0^{\circ} \mathrm{K}$
81. Two elements that are frequently used for making transistors are
(a) Iridium and Tungsten
(b) Lead and Tin
(c) Iron and Carbon
(d) Silicon and Germanium
82. IGBT combines the
(a) Switching characteristics of JFET with power handling capacity of BJT
(b) Switching characteristics of MOSFET with power handling capacity of BJT
(c) Switching characteristics of BJT with power handling capacity of JFET
(d) Switching characteristics of BJT with power handling capacity of MOSFET
83. The best conductor of heat among the liquids is
(a) Water
(b) Mercury
(c) Ether
(d) Alcohol
84. Consider the following statements regarding a semiconductor
85. Acceptor level lies close to valence band
86. Donor level lies close to valence band
87. N-type semiconductor behaves as a conductor at $0^{\circ} \mathrm{K}$
88. P-type semiconductor behaves as an insulator at $0^{\circ} \mathrm{K}$
(a) $1 \& 2$ are correct
(b) $1 \& 3$ are correct
(c) $1 \& 4$ are correct
(d) $2 \& 3$ are correct
89. The current in a PMOS transistor is
(a) Less than thrice that in an NMOS device
(b) Greater than thrice that in a PMOS device
(c) Less than half of that in an NMOS device
(d) Greater than half of that in a WMOS device
90. In a semiconductor, the total current is equal to
(a) Sum of electron and hole currents flow in same direction
(b) Sum of electron and hole currents flow in opposite directions
(c) Electron current only
(d) Hole current only
91. Semiconductor materials are made up of
(a) Metallic bond
(b) Ionic bond
(c) Un-shared bond
(d) Covalent bond
92. The barrier potential of Schottky diode is
(a) 0.25 V
(b) 0.35 V
(c) 0.45 V
(d) 0.56 V
93. Consider the statements with respect to semiconductor breakdown.
Statement 1: The Zener breakdown occurs in junctions which are lightly doped.
Statement 2: The avalanche breakdown occurs in junctions, which are heavily doped.
(a) Statements $1 \& 2$ are correct
(b) Only statement 1 is correct
(c) Only statement 2 is correct
(d) Statements $1 \& 2$ are wrong
94. In a PN junction, the density of carriers is near the junction and decays \qquad with distance.
(a) Low, linearly
(b) High, linearly
(c) Low, exponentially
(d) High, exponentially
95. Which type of the following structures contains two atoms per cell?
(a) Body centered cubic
(b) Face centered cubic
(c) Single cubic cell
(d) None of the above
96. The turn-on time of a typical transistor is equal to
(a) Delay time
(b) Rise time
(c) Storage time
(d) Sum of delay time \& rise time
97. Consider the following statements:
98. The bulk resistance is observed when diode is reverse biased
99. The junction resistance of a diode is variable resistance
(a) 1 is correct
(b) $1 \& 2$ are correct
(c) 2 is correct
(d) 1 is wrong but 2 is correct
100. A particle of zero initial velocity placed inside a uniform magnetic field will
(a) Move in zigzag directions along the line of flux
(b) Move with varying speed
(c) Move with constant speed along the line of force
(d) Move with constant speed opposite to the line of force
101. Across a varactor diode, an increase in its reverse bias potential causes
(a) Width of depletion layer to increase thus increasing the capacitance
(b) Width of depletion layer to decrease thus increasing the capacitance
(c) Width of depletion layer to increase thus decreasing the capacitance
(d) Width of depletion layer to decrease thus decreasing the capacitance
102. The germanium diode at room temperature for a forward current of 26 mA has dynamic resistance of about
(a) 100Ω
(b) 10Ω
(c) 1Ω
(d) 0.1Ω
103. Silicon can appreciably be employed as base material as compared to germanium while manufacturing Zener diode because
(a) Silicon is abundantly available
(b) It is not costlier
(c) Low current capability
(d) High temperature capacity
104. The maximum number of electron that an M-shell of an atom can contain is
(a) 4
(b) 12
(c) 18
(d) 34
105. As the temperature is increased, the voltage across the diode carrying constant current
(a) Increases
(b) Decreases
(c) Remains constant
(d) Fluctuates between low and high threshold values
106. Current flow in the semiconductor slap is due to
(a) Drift phenomenon
(b) Diffusion phenomenon
(c) Recombination phenomenon
(d) All of the above
107. If $C_{T}=$ space change capacitance and $C_{D}=$ storage capacitance of PN junction diode, then
(a) $C_{T}=C_{D}$
(b) $\mathrm{C}_{\mathrm{T}}>\mathrm{C}_{\mathrm{D}}$
(c) $C_{T}<C_{D}$
(d) $\mathrm{C}_{\mathrm{T}}=\mathrm{C}_{\mathrm{D}}=\infty$
108. At low temperature, the resistivity of metals is proportional to the
(a) $5^{\text {th }}$ power of absolute temperature
(b) $6^{\text {th }}$ power of absolute temperature
(c) $7^{\text {th }}$ power of absolute temperature
(d) $9^{\text {th }}$ power of absolute temperature
109. Which one is the valid statement with respect to PN junction diode?
(a) Under forward bias, the electrons from P region \& holes from N region drift towards the junction
(b) A junction diode cannot be used as a switch in electrical circuits
(c) Depletion capacitance is voltage independent
(d) Diffusion current of minority carriers is proportional to the concentration gradient
110. In intrinsic semiconductor
(a) The electron density is twice the hole density
(b) The electron density is thrice the hole density
(c) The electron density is square root of the hole density
(d) The electron density is same as the hole density
111. The Fermi-Dirac probability function specifying all states at energy E (electron volts) occupied under the thermal equilibrium is given by
(a) $\mathrm{f}(\mathrm{E})=\mathrm{KT}-\ln \mathrm{e}^{\mathrm{E}-\mathrm{Ef}}$
(b) $\mathrm{f}(\mathrm{E})=1+\mathrm{e}^{\mathrm{E}-\mathrm{Ef}}$
(c) $\mathrm{f}(\mathrm{E})=1\left(1+\mathrm{e}^{(\mathrm{E}-\mathrm{Ef} / \mathrm{kT}}\right)$
(d) $f(E)=\left((E) / E_{f}\right) e^{-K T}$
112. Which among the following diodes has zero breakdown voltage?
(a) Zener diode
(b) Schottky diode
(c) Backward diode
(d) Tunnel diode
113. Match list 1 with list 2 with respect to transistor biasing

Biasing
Region of operation
(A) When EB \& CB
junctions are forward biased
(B) When EB \& CB
junctions are reverse biased
(C) When EB is
forward biased \&
$C B$ is reverse biased
(D) When EB is reverse
(4) Saturation
$\& C B$ is forward biased
(a) $\mathrm{A}-1, \mathrm{~B}-2, \mathrm{C}-3, \mathrm{D}-4$
(b) A-4, B-2, C-3, D-1
(c) $\mathrm{A}-4, \mathrm{~B}-3, \mathrm{C}-2, \mathrm{D}-1$
(d) A-4, B-1, C-3, D-2
113. A Zener diode may be thought as open for
(a) 0 V $<$ V $<V_{\text {Z }}$
(b) $0 \mathrm{~V}>\mathrm{V}>\mathrm{V}_{\mathrm{Z}}$
(c) 0 V $>V<V_{z}$
(d) $0 V<V>V_{z}$
114. In silicon material, the mobility of free electron is
(a) $2.5 \mathrm{~m}^{2} / \mathrm{Vs}$
(b) $2.7 \mathrm{~m}^{2} / \mathrm{Vs}$
(c) $1.66 \mathrm{~m}^{2} / \mathrm{Vs}$
(d) $2.33 \mathrm{~m}^{2} / \mathrm{Vs}$
115. The dynamic resistance r of a diode varies as
(a) $1 / I$
(b) $1 / \mathrm{I}^{2}$
(c) I
(d) I^{2}
116. The reverse saturation current in germanium diode is of the order of
(a) 1 nano amps
(b) 1 micro amps
(c) 1 milli amps
(d) 1 kilo amps
117. The covalent crystals are characterized by
(a) Good electrical conductivity and low hardness
(b) Good electrical conductivity and high hardness
(c) Poor electrical conductivity and high hardness
(d) Poor electrical conductivity and low hardness
118. The diode capacitance has \qquad temperature coefficient and the figure of merit has \qquad temperature coefficient.
(a) Positive, Positive
(b) Negative, Negative
(c) Positive, Negative
(d) Negative, Positive
119. A Schottky diode has
(a) Insulator-Semiconductor junction
(b) Semiconductor-Semiconductor junction
(c) Metal - Semiconductor junction
(d) Metal-Metal junction
120. Which is the largest transistor current?
(a) Emitter current
(b) Base current
(c) Collector current
(d) Both Emitter \& Collector currents
121. A laser diode
(a) Produces always light of single wavelength
(b) Produces always light of multiple wavelength
(c) Can be made to produce light of single and multiple wavelengths
(d) Produces visible light spectrum
122. Which type contains two atoms per cell?
(a) Body centered cubic
(b) Face centered cubic
(c) Single cubic cell
(d) None of the above
123. With reference to JFET configuration, match the following
(P) Common Source
(1) No phase shift Configuration
between input \& output
(Q) Common Drain Configuration
(R) Common Gate Configuration
(2) High input impedance \& low output impedance
(3) Source follower
(a) P-1, Q-2, R-3
(b) P-2, Q-3, R-1
(c) P-2, Q-1, R-3
(d) P-3, Q-1, R-2
124. A Nixie cold cathode glow discharge tube has
(a) 20 cathodes
(b) 15 cathodes
(c) 14 cathodes
(d) 10 cathodes
125. Consider the following statements

1. LED is also known as direct gap diode
2. LCD generates light

Of these statements
(a) 1 is correct but 2 is wrong
(b) 2 is correct but 1 is wrong
(c) Both $1 \& 2$ are correct
(d) Both $1 \& 2$ are wrong
126. The isolation capacitance of an opto coupler is in the order of
(a) $0.3-2.5 \mu \mathrm{~F}$
(b) $0.3-2.5 \mathrm{~F}$
(c) $0.3-2.5 \mathrm{pF}$
(d) $0.3-2.5 \mathrm{nF}$
127. The light activated SCRs are sensitive to
(a) Light
(b) Temperature
(c) Rate of change of applied voltage
(d) All of the above
128. The light emitting diode
(a) Usually made from metal oxide
(b) Is Used in reverse biased condition
(c) Gives light when temperature increases
(d) Gives light due to electron hole recombination
129. The numeric aperture is the fiber optic cable's ability
(a) To collect the light
(b) To diffract the light
(c) To reflect the light
(d) To refract the light
130. The color emitted by an LED depends mainly on
(a) Type of material used
(b) Type of biasing applied
(c) Recombination rate of charge carriers
(d) Environmental conditions
131. The minority holes are about \qquad that of electron.
(a) Half
(b) Same
(c) Twice
(d) Thrice
132. Compared to visible red light emitting diode, an infrared LED
(a) Produces light with longer wavelength
(b) Produces light with shorter wavelength
(c) Produces light with medium wavelength
(d) Produces light of all wavelengths
133. At absolute zero temperature, an intrinsic semiconductor behaves like a
(a) Conductor
(b) Insulator
(c) Semiconductor
(d) Other metals
134. Germanium and silicon are
(a) Trivalent
(b) Tetravalent
(c) Pentavalent
(d) Covalent
135. In comparison to LED, LASER has

1. High emission frequency
2. No tuning arrangement
3. Narrow spectral bandwidth
4. Provision for confinement

Of these statements
(a) $1,3, \& 4$ are correct
(b) $1,2, \& 3$ are correct
(c) $1 \& 3$ are correct
(d) 2,3, \& 4 are correct
136. The volume charge density of mobile carriers is expressed in
(a) Coulombs / cubic meters
(b) Coulombs / meters
(c) Coulombs / seconds
(d) Coulombs / volts
137. An LCD requires a power of about
(a) 20 W
(b) 20 mW
(c) $20 \mu \mathrm{~W}$
(d) 20 nW
138. Barrier potential of PN junction decreases as temperature
(a) Increases
(b) Decreases
(c) Remains constant
(d) Increases \& then decreases
139. Valence electrons are
(a) In the closest orbit of the nucleus
(b) In the most distant orbit from the nucleus
(c) In the various orbits around the nucleus
(d) Not associated with a particular atom
140. In a PIN diode, the intrinsic layer sandwiched between the heavily doped P \& N layers is
(a) Heavily doped
(b) Lightly doped
(c) Very lightly doped
(d) Moderately doped
141. If an atom has an atomic number of 6 , then it has
(a) 3 electrons \& 3 protons
(b) 4 electrons \& 2 protons
(c) 2 electrons \& 4 protons
(d) 6 electrons \& 6 protons
142. Transistor is said to be in a quiescent state when
(a) It is unbiased
(b) No current flows through it
(c) No signal is applied to its input
(d) Emitter junction is reverse biased
143. In a Silicon crystal, the number of covalent bonds a single atom can form is
(a) 2
(b) 4
(c) 6
(d) 8
144. Peak inverse voltage of the diode is found to be
(a) Greater or equal to V_{M}
(b) Small or equal to V_{M}
(c) Equal to V_{M}
(d) Not equal to V_{M}
145. What is the type of capacitance effect exhibited by the PN junction when it is forward biased?
(a) Diffusion capacitance
(b) Storage capacitance
(c) Drift capacitance
(d) Transition capacitance
146. Which of the following elements is most abundant in the earth's crust?
(a) Oxygen
(b) Sulphur
(c) Silicon
(d) Carbon
147. A semiconductor has a resistivity which
(a) Is smaller than $10^{-2} \Omega$-cm
(b) Is larger than $10^{-2} \Omega-\mathrm{cm}$
(c) Varies between $10^{-2} \Omega-\mathrm{cm}$ and $10^{-9} \Omega-\mathrm{cm}$
(d) None of the above
148. In Bohr's theory of atom, all the orbits of the electrons are considered circular in shape. The de Broglie wavelength λ n corresponding to the electron in the $n^{\text {th }}$ orbit is
(a) Proportional to n
(b) Proportional to n^{2}
(c) Inversely proportional to n
(d) Inversely proportional to n^{2}
149. The variable capacitance property possessed by the reverse biased PN junction is used to construct a device known as
(a) Zener diode
(b) Volta caps
(c) Gunn diode
(d) Tunnel diode
150. Consider the following statements regarding Bohr atomic model.
(Pick the right one)

1. It introduces the idea of stationary orbit
2. It assumes that angular momentum of electron is equal to $1 / 2(\mathrm{~h} / 2 \pi)$
3. It uses planetary model of atom revolving in circular orbit
(a) $1 \& 2$
(b) $2 \& 3$
(c) $1 \& 3$
(d) $1,2 \& 3$
4. When an electron moves from a higher orbit to a lower orbit
(a) Emission of energy takes place
(b) Absorption of energy takes place
(c) Size of the atom increases
(d) Either absorption or emission of energy takes place
5. Emission of light in an LED results due to
(a) Emission of electrons
(b) Photovoltaic effect
(c) Generation of electromagnetic radiation
(d) Conversion of heat to electrical energy
6. Match the items in Group I with items in Group II most suitably

Group I
(P) LED

Group II
(Q) Avalanche photo diode
(1) Heavily doped
(2) Coherent radiation
(3) Spontaneous emission
(S) LASER
(4) Current gain
(a) P-2, Q-1, R-3, S-4
(b) P-4, Q-3, R-2, S-1
(c) P-3, Q-4, R-1, S-2
(d) P-3, Q-2, R-1, S-4
154. Which of the following statements is/are correct?
(a) Two discrete diodes connected back-to-back can work as a transistor
(b) Heat sink is a sheet of insulator used to dissipate the heat developed at the collector junction of a power transistor
(c) The collector leakage current is strongly independent of temperature
(d) The collector junction of transistor is heavily doped
155. Consider the following statements

Rutherford's alpha particle scattering experiment proved that the nucleus

1. Contains massive particles
2. Is a +ve charge center
3. Is quite stable

Which of the statements are correct?
(a) 1, 2, 3
(b) 1, 2
(c) 2,3
(d) 1,3
156. The Common-emitter amplifier is preferred to Common-base amplifier due to
(a) Higher amplification factor
(b) Easy biasing network
(c) Good stability
(d) Economicity
157. When an electron moves from lower orbit to a higher orbit
(a) Emission of energy takes place
(b) Absorption of energy takes place
(c) Size of atom increases
(d) Either absorption or emission of energy takes place
158. Consider the statements

1. Ideal diode conducts with zero resistance when forward biased
2. Ideal diode appears as an infinite resistance when reverse biased
(a) Only 1 is correct
(b) Only 2 is correct
(c) Both $1 \& 2$ are correct
(d) Either 1 or 2 is correct
3. The forbidden energy gap E_{G} in a semiconductor is a function of
(a) Current
(b) Voltage
(c) Potential
(d) Temperature
4. Based on Quantum mechanical theory, the mass of holes are \qquad than the electrons.
(a) Larger
(b) Smaller
(c) Equal
(d) None of the above
5. The atomic number of germanium is
(a) 24
(b) 26
(c) 28
(d) 32
6. Dislocations are
(a) Line defects
(b) Planar defects
(c) Point defects
(d) Chemical defects
7. Intrinsic concentration of charge carriers in a semiconductor varies as
(a) T
(b) T^{2}
(c) T^{3}
(d) $1 / \mathrm{T}$
8. On increasing the impurity concentration in the metal, the residual part of the resistivity
(a) Decreases
(b) Increases
(c) Remains constant
(d) May increase or decrease
9. At room temperature in intrinsic germanium, there is about
(a) One free electron for every 10^{9} atoms
(b) One free electron for every 10^{10} atoms
(c) One free electron for every 10^{12} atoms
(d) One free electron for every 10^{15} atoms
10. The UJT is a
(a) Voltage controlled device
(b) Current controlled device
(c) Relaxation oscillator
(d) None of these
11. The electrical conductivity is directly proportional to
(I) Electron density
(II) Relaxation time of electrons
(a) Both I \& II
(b) Only II
(c) Only I
(d) Neither I nor II
12. A compensated semiconductor is doped with
(a) Only donor impurities
(b) Only acceptor impurities
(c) Both donor and acceptor impurities
(d) Neither donor nor acceptor impurity
13. Hall effect multiplier gives an output proportional to the product of \qquad signal.
(a) Two
(b) Three
(c) Four
(d) Infinite
14. The dynamic impedance of Zener diode with increase in the current flow through it.
(a) Increases
(b) Decreases
(c) Remains unaffected
(d) Is independent
15. Donor impurity atoms in a semiconductor results in the formation of new
(a) Wide energy band
(b) Narrow energy band
(c) Discrete energy level just below conduction
(d) Discrete energy level just above conduction
16. The depletion region of a semiconductor has
(a) Only free electrons
(b) Only holes
(c) Both free electrons and holes
(d) Absence of free electrons and holes
17. The electron density in conduction band is proportional to
(a) Donor concentration
(b) Square of donor concentration
(c) Square root of donor concentration
(d) Cube root of donor concentration
18. Capacitance is
(a) Exponentially proportional to the time constant
(b) Linearly proportional to the time constant
(c) Differentially proportional to the time constant
(d) None of these
19. Diffusion capacitance is a capacitance of a
(a) Reverse biased semiconductor diode junction caused by unequal doping
(b) Reverse biased semiconductor diode junction caused by equal doping
(c) Forward biased semiconductor diode junction caused by unequal doping
(d) Forward biased semiconductor diode junction caused by equal doping
20. Constantan is a Copper-Nickel alloy consisting of
(a) $60 \% \mathrm{Cu}$ and $40 \% \mathrm{Ni}$
(b) $70 \% \mathrm{Cu}$ and $30 \% \mathrm{Ni}$
(c) $50 \% \mathrm{Cu}$ and $50 \% \mathrm{Ni}$
(d) $80 \% \mathrm{Cu}$ and $20 \% \mathrm{Ni}$
21. Current flow through the semiconductor is due to
(a) Drift current
(b) Diffusion current
(c) Recombination of charges
(d) All of the above
22. The depletion layer across the junction contains
(a) Mobile carriers
(b) No mobile carriers
(b) Immobile carriers
(d) No charge carriers
23. Conduction modulation is exhibited by
(a) Transistor
(b) Diode
(c) JFET
(d) Tunnel diode
24. For both Ge and Si , the barrier voltage decreases by about
(a) $1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
(b) $2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
(c) $3 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
(d) $5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
25. The drift velocity of an electron depends on
(a) Electron and holes mobility
(b) Electron mobility
(c) Electron mobility and applied electric field
(d) Applied electric field
26. Junction gate type of FET can be operated
(a) Only in depletion mode
(b) Only in enhancement mode
(c) Both depletion \& enhancement modes
(a) Either depletion or enhancement mode
27. To find whether the semiconductor is N-type or Ptype, one of the following effects can be used
(a) Seebeck effect
(b) Peltier effect
(c) Hall effect
(d) Avalanche effect
28. The constant current area of FET lies between
(a) $0 \& I_{\text {DSS }}$
(b) Cut off \& Pinch off regions
(c) Cut off \& Saturation regions
(d) Pinch-off \& break-down regions
29. Electrostatic discharge may kill
(a) BJT
(b) FET
(c) UJT
(d) MOSFET
30. The transistor was invented at Bell Laboratories in 1947 by
(a) John Bardeen
(b) Walter Brattain
(c) William Shockley
(d) All of the above
31. The reverse saturation current
(a) Remains same for every $10^{\circ} \mathrm{C}$ rise in temperature
(b) Doubles for every $10^{\circ} \mathrm{C}$ rise in temperature
(c) Reduces to half for every $10^{\circ} \mathrm{C}$ rise in temperature
(d) None of the above
32. Practically the hole mobility is \qquad to the electron mobility in intrinsic semiconductor.
(a) Equal
(b) Half
(c) Twice
(d) Thrice
33. A BJT is \qquad controlled and the FET is
\qquad controlled device.
(a) Current, Current
(b) Voltage, Voltage
(c) Voltage, Current
(d) Current, Voltage
34. Typical value of parameter $h_{f e}$ is
(a) 25
(b) 50
(c) 75
(d) 100
35. The gate of FET is analogous to the \qquad of BJT.
(a) Emitter
(b) Collector
(c) Base
(d) None of these
36. When a transistor is wrongly biased, then
(a) The emitter terminal gets heavily loaded
(b) Excess production of heat is observed at the collector terminal
(c) The output signal gets distorted
(d) The AC load line gets distorted
37. The equivalent circuit of FET contains
(a) A current source in series with resistance
(b) A resistance between drain and source terminals
(c) A current source between gate and source terminals
(d) A current source between drain and source terminals
38. Which of the following statements is/are correct?
39. The input capacitance of FET is low
40. The transfer characteristics of FET can be represented mathematically by the Shockley equation
(a) Statement 1
(b) Statement 2
(c) Both statements 1 \& 2
(d) Either statement 1 or 2
41. Which of the following statements is/are correct?

I The DC load line is steeper than AC load line II BJT is a voltage controlled device
(a) Statement I
(b) Statement II
(c) Both statements I \& II
(d) Either statement I or II
197. Which of the following statements is/are correct?
(A) Hybrid parameter of transistors can be used only when input signal is large
(B) Out of the four h parameters of transistor, h_{fe} has the least numerical value
(a) Statement A
(b) Statement B
(c) Both statements A \& B
(d) Either statement A or B
198. Which electron in an element is responsible for chemical \& electrical properties?
(a) Valence electrons
(b) Revolving electrons
(c) Active electrons
(d) Passive electrons
199. Typical UJT structure has
(a) Lightly doped N-type silicon bar with ohmic contacts at its each end
(b) Heavily doped N-type silicon bar with ohmic contacts at its each end
(c) Lightly doped P-type silicon bar with ohmic contacts at its each end
(d) Heavily doped P-type silicon bar with ohmic contacts at its each end
200. Which of the following devices is also known as complementary SCR?
(a) Junction field effect transistor
(b) Unijunction transistor
(c) Programmable unijunction transistor
(d) Triac
201. In an ideal JFET, R_{GS} is infinite because
(a) $\mathrm{I}_{\mathrm{G}}<0$
(b) $\mathrm{I}_{\mathrm{G}}>0$
(c) $\mathrm{I}_{\mathrm{G}}=0$
(d) $\mathrm{I}_{\mathrm{G}}=\infty$
202. For a transistor, the current amplification factor
(a) α is greater than β
(b) α is lesser than β
(c) α is equal to β
(d) $\alpha \& \beta$ always equal to zero
203. In an N-type material, the free electrons concentration is approximately equal to
(a) The density of acceptor atoms
(b) The density of the donor atoms
(c) Sum of the density of acceptor and donor atoms
(d) None of these
204. The absolute zero temperature is equal to
(a) $0^{\circ} \mathrm{C}$
(b) $273^{\circ} \mathrm{C}$
(c) $-273^{\circ} \mathrm{C}$
(d) $27^{\circ} \mathrm{C}$
205. The combined package of LED and a photodiode is known as
(a) Optocouplers
(b) Opto isolator
(c) Optically coupled isolator
(d) All of the above
206. The substrate for IC fabrication is

(c) N type with typical thickness $200 \mu \mathrm{~m}$
(d) N type with typical thickness $50 \mu \mathrm{~m}$
207. The advantages of opto isolators is/are
(a) Easy to interface with logic devices
(b) Capable of wideband signal transmission
(c) Problems such as noise transients, contact bounce is completely eliminated
(d) All of the above
208. In IC fabrication, metallization means
(a) Depositing SiO_{2} layer
(b) Covering with metallic cap
(c) Forming interconnection conduction pattern
(d) All of the above
209. \qquad number of electrons is responsible for its chemical and electrical properties.
(a) 32
(b) 14
(c) 16
(d) 9
210. A semiconductor is those material which has
(a) Almost filled valence and conduction bands
(b) Almost empty valence and conduction bands
(c) Almost filled valence and almost empty conduction bands
(a) n-channel depletion MOSFET
(b) p-channel depletion MOSFET
(c) n-channel enhancement MOSFET
(d) p-channel enhancement MOSFET
(d) Almost empty valence and almost filled conduction bands
211. In the case of insulators, as the temperature decreases, its resistivity
(a) Increases
(b) Decreases
(c) Becomes zero
(d) Remains unaltered
212. A silicon diode dissipates $3 W$ for a forward DC current of 2A. The forward voltage drop across the diode will be
(a) 0.5 V
(b) 1.0 V
(c) 1.5 V
(d) 6.0 V
213. An electron in a completely filled band
(a) Contributes to the flow of electric current
(b) Does not contributes to the flow of electric current
(c) Can move but doesn't contribute to the flow of electric current
(d) None of these
214. The junction resistance $\left(r_{j}\right)$ of a germanium diode is found to be
(a) $25 \mathrm{mV} / \mathrm{I}_{\mathrm{F}}$
(b) $50 \mathrm{mV} / \mathrm{I}_{\mathrm{F}}$
(c) $76 \mathrm{mV} / \mathrm{I}_{\mathrm{F}}$
(d) $96 \mathrm{mV} / \mathrm{I}_{\mathrm{F}}$
215. The relation between the energy released and frequency of the emitted radiation of an atom is given by the expression
(a) $\Delta \mathrm{E}=\mathrm{h} / \mathrm{f}$
(b) $\Delta \mathrm{E}=\mathrm{h}+\mathrm{f}$
(c) $\Delta \mathrm{E}=\mathrm{hf}$
(d) $\Delta \mathrm{E}=1+\mathrm{h} / \mathrm{f}$
216. The transistor must be operated in \qquad when employed as amplifying device.
(a) Saturation region
(b) Cut-off region
(c) Activeregion
(d) Any of the three regions
217. The number of equations required to solve a network by mesh analysis is equal to the number of
(a) Independent nodes
(b) Independent branchs
(c) Independent meshs
(d) Independent loops
218. The symbol given below denotes

219. The frequency biased PN junction diode
(a) Acts like an open circuit
(h) Offersinfinite resistance
(c) Provides very high voltage drop
(d) Conducts current easily
220. The active components of the IC's are formed in
(a) The substrate
(b) SiO_{2} layer
(c) Epitaxial layer
(d) None of these
221. The material whose Hall effect is found to be zero is
(a) Conductor
(b) Insulator
(c) Extrinsic semiconductor
(d) Intrinsic semiconductor
222. In a single chip computer, CMOS circuits are used because of
(a) Low lower dissipation
(b) Large packing density
(c) High noise immunity
(d) economicity
224. In a transistor, if $I_{C}=100 \mathrm{~mA}$ and $I_{E}=100 \mathrm{~mA}$ then the value of β is given by
(a) 200
(b) 100
(c) 10
(d) 1
225. The junction resistance (r) of a Germanium diode is
(a) $25 \mathrm{mV} / \mathrm{I}_{\mathrm{F}}$
(b) $50 \mathrm{mV} / \mathrm{I}_{\mathrm{F}}$
(c) $76 \mathrm{mV} / \mathrm{I}_{\mathrm{F}}$
(d) $96 \mathrm{mV} / \mathrm{I}_{\mathrm{F}}$
226. $I_{\text {Сво }}$ doubles for energy $10^{\circ} \mathrm{C}$ rise in temperature for
(a) Germanium
(b) Silicon
(c) Extrinsic Semiconductor
(d) Both (a) \& (b)
227. The nucleus of atom is made of
(a) Protons \& Electrons
(b) Protons \& Neutrons
(c) Protons \& Krypton
(d) Neutron \& Electrons
228. Widely used semiconductors such as silicon, germanium are placed in \qquad -.
(a) First column
(b) Second column
(c) Third column
(d) Fourth column
229. Compare the Lists

List I

(P) Pico

List II
(Q) Femto
(R) Atto
(S) Nano
(1) 10^{-12}
(2) 10^{-15}
(3) 10^{-18}
(4) 10^{-9}
(a) P-(4), Q-(2), R-(3), S-(1)
(b) P-(1), Q-(2), R-(3), S-(4)
(c) $\mathrm{P}-(4), \mathrm{Q}-(3), \mathrm{R}-(2), \mathrm{S}-(1)$
(d) P-(1), Q-(3), R-(2), S-(4)
230. The symbol given below denotes

(a) n channel depletion MOSFET
(b) p channel depletion MOSFET
(c) n channel enhancement MOSFET
(d) p channel enhancement MOSFET
231. Which is valid with respect to JFET?
(a) Operated in depletion and enhancement modes
(b) Gate is not insulated from channel
(c) Channel doesn't permanently exist
(d) It possesses low input impedance
232. On introducing a dielectric medium in between the plates of a capacitor, one of the following quantities will not change
(a) Charge storing capacity
(b) Potential difference
(c) Electric field strength
(d) Electric flux density
233. A PN junction is a/an
(a) Oscillator
(b) Amplifier
(c) Insulator
(d) Rectifier
234. Ferrites are subgroup of
(a) Paramagnetic materials
(b) Diamagnetic materials
(c) Ferromagnetic materials
(d) Ferrimagnetic materials
235. Line imperfection in a crystal is called as
(a) Point dislocation
(b) Edge dislocation
(c) Schottky defect
(d) van der Waals defect
236. The elements in a periodic table are arranged, based on the increasing order of
(a) Atomic number
(b) Mass number
(c) Molecular weight
(d) Alphabetical order
237. For a silicon, the $I_{\text {Сво }}$ doubles for every
(a) $5^{\circ} \mathrm{C}$ rise in temperature
(b) $6^{\circ} \mathrm{C}$ rise in temperature
(c) $10^{\circ} \mathrm{C}$ rise in temperature
(d) $12^{\circ} \mathrm{C}$ rise in temperature
238. The conductor of a 10 km long, single phase, two-wire line is separated by a distance 1.5 m . The diameter of each conductoris 1 cm . If the conductors are of copper, the inductance of the circuit is found to be
(a) 50.0 mH
(b) 45.3 mH
(c) 23.8 mH
(d) 19.6 mH
239. An n-channel JFET having a pinch off voltage of -5 V shows a transconductance of $1 \mathrm{~mA} / \mathrm{V}$ when applied gate-to-source voltage of -3 V . Then its maximum transconductance is found to be
(a) $1.5 \mathrm{~mA} / \mathrm{V}$
(b) $2.0 \mathrm{~mA} / \mathrm{V}$
(c) $2.5 \mathrm{~mA} / \mathrm{V}$
(d) $3.0 \mathrm{~mA} / \mathrm{V}$
240. Strictly speaking, for an NPN transistor,
(a) I_{C} should be positive but I_{E} should be negative
(b) I_{C} should be negative but I_{E} should be positive
(c) Both $I_{C} \& I_{E}$ should be positive
(d) Both $I_{C} \& I_{E}$ should be negative
241. Air gap in the iron core of an inductor prevents
(a) Core saturation
(b) Hysteresis loss
(c) Flux leakage
(d) Transformer action
242. The solid which has no periodic structures at all is called as
(a) Crystalline solid
(b) Amorphous solid
(c) Polycrystalline solid
(d) Solids
243. The resistivity of pure silicon decreases
(a) With decrease in temperature
(b) With increase in temperature
(c) With constant temperature
(d) None of these
244. JFET channel is pinched-off only when
(a) $V_{D D}$ is equal to V_{P}
(b) $V_{D S}$ is greater than V_{P}
(c) $V_{D S}$ is less than V_{P}
(d) $V_{D S}$ is equal to V_{P}
245. Determine the invalid statement.
(a) For an n-channel JFET, both V_{GS} and V_{P} are negative
(b) For a p-channel JFET, both V_{GS} and V_{P} are posi-
(c) tive For an n-channel JFET, I is positive
(d) For a p-channel JFET, $I_{\text {DSS }}$ is positive
246. The function of SiO_{2} layer in IC fabrication is
(a) Oxide masking
(b) Oxide passivation
(c) Oxide purification
(d) Both (a) \& (b)
247. When gold and aluminum react, an intermetallic compound is formed known as
(a) Purple plaque
(b) Yellow plaque
(c) Red plaque
(d) White plaque
248. A plasma is a
(a) Collection of electrons, positive and negative ions only
(b) Collection of electrons and positive ions only
(c) Collection of neutral atoms and molecules only
(d) Collection of electrons, positive and negative ions, neutral atoms and molecules
249. Which is the final step in wafer processing sequence?
(a) Photolithography
(b) Chemical vapour
(c) Metallization
(d) Oxidation
250. Diffusion constant for electron is \qquad to hole.
(a) Equal
(b) Greater than
(c) Lesser than
(d) Can't be determined
251. When a transistor is used as amplifier, then \qquad breakdown is more destructive to the device.
(a) Zener
(b) Diode
(c) Collector-Base
(d) Base-Emitter
252. The variation of I_{C} with $V_{C E}$ observed in a bipolar transistor output characteristic is called as
(a) Ohmic effect
(b) Early effect
(c) Late effect
(d) Natural effect
253. Small signals refers to
(a) Low amplitude signals
(b) Low frequency signals
(c) Small signals as compared to bias currents
(d) Small signals as compared to bias currents \& voltages in a circuit
254. Kirk effect in a transistor occurs when
(a) The majority carrier's concentration in the collector becomes comparable to the donoratom doping density
(b) The minority carrier's concentration in the collector becomes comparable to the acceptor atom doping density
(c) Emitter-base junction is reverse biased
(d) The base region of transistor stretches into the collector region of transistor
255. The parasitic resistance value can be reduced by
(a) Operating the transistor in saturation region
(b) Operating the transistor in cut-off region
(c) Changing the transistor structure
(d) Grounding the emitter terminal of the transistor

256. Consider the statements

Statement I: N-channel MOS transistors are faster than p-channel MOS transistor.
Statement II: Surface field effect is the operational principle of MOSFETs.
Which of the above is/are a valid one?
(a) Statement I only
(b) Statement II only
(c) Both statements I and II
(d) Either statement I or II
257. Identify the ordered processing steps in fabrication of integrated circuits.
(a) Diffusion, Oxidation, Chemical vapor deposition, Photolithography, Metallization
(b) Oxidation, Diffusion, Chemical vapor deposition, Photolithography, Metallization
(c) Chemical vapor deposition, Oxidation, Diffusion, Photolithography, Metallization
(d) Diffusion, Oxidation, Photolithography, Chemical vapor deposition, Metallization
258. Parasitic resistance is produced by
(a) Viruses
(b) Infinite resistance of silicon
(c) Finite resistance of impurity
(d) Finite resistance of silicon between the top contacts on the transistor and active base region beneath the emitter
259. $\{111\}$ planes oxidize faster than $\{100\}$ because
(a) They have higher tensile strength
(b) They have fewer atoms per unit surface area
(c) They have more atoms per unit surface area
(d) They are good conductors
260. In IC fabrication, gettering is a process by which
(a) The silicon wafer is highly polished
(b) The silicon wafer is pre-heated to an optimum temperature for diffusion
(c) The harmful impurities or defects are removed from the region in a wafer where devices are to be fabricated
(d) Wafers are sliced into thin films
261. The law, which governs the diffusion process during the IC fabrication, is
(a) Flicker's law
(b) Flick law
(c) Fick law
(d) Fickler's law
262. In order to increase the speed of digital operations,
\qquad is used as diffusant which reduces the carrier life time.
(a) Boron
(b) Arsenic
(c) Nickel
(d) Gold
263. The most common diffusant used in interstitial diffusion in IC fabrication is
(a) Boron
(b) Arsenic
(c) Nickel
(d) Gold
264. The volt-ampere relation for $P N$ junction can be expressed as
(a) $\mathrm{I}=\mathrm{I}_{\mathrm{S}}\left[\mathrm{e}^{\mathrm{V} / \mathrm{n} . \mathrm{Vt}}\right]-1$
(b) $\mathrm{I}=1 / \mathrm{I}_{\mathrm{s}}\left[\mathrm{e}^{\mathrm{V} / \mathrm{n} \cdot \mathrm{Vt}^{2}}\right]-1$
(c) $\mathrm{I}=\mathrm{I}_{\mathrm{S}}\left[\mathrm{e}^{\mathrm{V} / \mathrm{n} \cdot \mathrm{Vt}}-1\right]$
(d) $\mathrm{I}=\mathrm{I}_{\mathrm{S}}\left[\mathrm{e}^{\mathrm{V} / \mathrm{n} \cdot \mathrm{Vt}}+1\right]$
265. The velocity of the electron in the $n^{\text {th }}$ orbit is given by the equation
(a) $\mathrm{V}_{\mathrm{n}}=\left(\mathrm{h}_{\mathrm{n}} / \pi \mathrm{mr}_{\mathrm{n}}\right)$
(b) $\mathrm{V}_{\mathrm{n}}=\left(\pi \mathrm{h}^{2} / \mathrm{mr}_{\mathrm{n}}\right)$
(c) $\mathrm{V}_{\mathrm{n}}=\left(\mathrm{n}(\mathrm{h} / 2 \pi) / \mathrm{mr}_{\mathrm{n}}\right)$
(d) $V_{n}^{n}=\left(n h / 2 \pi m r_{n}\right)$
266. What is the de Broglie wavelength of neutrons at room temperature?
(a) 0.145 nm
(b) 0.82 nm
(c) 0.64 nm
(d) 4.23 nm
267. Metallic crystal possesses
(a) High optical reflection and absorption coefficient
(b) Good conducting property due to the presence of free electrons
(c) Opaque to all electromagnetic radiations from low frequency to the middle ultraviolet
(d) All of these
268. Germanium has a
(a) Diamond cube (dc) structure
(b) Simple cube (sc) structure
(c) Face centered cube (fcc) structure
(d) Body centered cube (bcc) structure
269. Superconductivity is otherwise known as
(a) Zero resistivity
(b) Zero conductivity
(c) Infinite resistivity
(d) Simply semiconductor
270. The tunnel effect was discovered in 1960 by
(a) H.K. Onnes
(b) Deaver \& Fairbank
(c) J. Bardeen
(d) Giaever
271. The unit of electrical dipole moment is
(a) Debye
(b) Pascal
(c) Ohms
(d) Flux
272. Superconductivity can be destroyed by the application of
(a) An electrical field
(b) A magnetic field
(c) Both electrical \& magnetic fields simultaneously
(d) Either electric or magnetic field
273. The electron mobility is greater in
(a) Germanium
(b) Silicon
(c) Gallium arsenide
(d) Bakelite
274. The relative distance of the electron from the nucleus is same as
(a) The relative distance between Earth and Moon
(b) The relative distance between Sun and Earth
(c) The relative distance between Earth and Pluto
(d) The relative distance between Sun and Pluto
275. If an excess carrier is injected into semiconductor,
(a) They diffuse away from the point of injection
(b) They concentrate at the point of injection
(c) They randomly move but centered at the point of injection
(d) They uniformly distribute themselves
276. One part of donor impurities to 10^{8} parts of germanium
(a) Increases the conductivity of the crystal twofold
(b) Increases the conductivity of the crystal fourfold
(c) Increases the conductivity of the crystal eightfold
(d) Increases the conductivity of the crystal tenfold
277. The following statement forms the basis of one of the following electronic devices. Identify it.
"If a particle is electronic on a potential barrier with energy certainly less than the height of the potential barrier, it will not necessarily be reflected by the barrier but there is always a probability that it may cross the barrier and continue its forward motion".
(a) Tunnel diode
(b) PIN diode
(c) Schottky diode
(d) Metal oxide semiconductor diode
278. The Bragg's diffraction equation is given by
(a) $\sin \theta=n \lambda / 2 d$
(b) $\sin \theta=\mathrm{n} / 2 \mathrm{~d} \lambda$
(c) $\sin \theta=2 \operatorname{dn} \lambda$
(d) $\sin \theta=2(\mathrm{n}-\lambda \mathrm{d})$
279. Silicon \& carbon have a
(a) Diamond cube (dc) structure
(b) Simple cube (sc) structure
(c) Face centered cube (fcc) structure
(d) Body centered cube (bcc) structure
280. Which one of the following factors doesn't correspond to a common collector amplifier?
(a) High input impedance
(b) Low output impedance
(c) High voltage gain
(d) High current gain
281. The gain of source follower is
(a) 1
(b) 5
(c) 10
(d) 100
282. Identify the false statement with respect to the Zener diode.
(a) Zener diode is needed for voltage regulation
(b) Zener diode is operated in reverse biased condition
(c) Zener diode has similar characteristics to that of an ideal current source
(d) None of the above
283. Consider the statements:

Statement I: Fermi level is slightly lowered by adding the donor impurity

Statement II: Fermi level is the maximum energy that any electron can have at room temperature.
Which of the following is correct?
(a) Statement I
(b) Statement II
(c) Both statements I \& II
(d) Either statement I or II
284. GaAs LED's emit radiation in the
(a) Ultraviolet region
(b) Visible region
(c) Infrared region
(d) Invisible region
285. LED's are fabricated from
(a) Si
(b) Ge
(c) Si or Ge
(d) GaAs
286. Which material is generally used to build LED?
(a) Compounds of gallium
(b) Compounds of phosphorus
(c) Compounds of germanium
(d) Compounds of silicon
287. A UJT has
(a) Negative resistance characteristics
(b) Low firing current
(c) Bipolar device
(d) All of these
288. Breakdown in a silicon UJT was observed to occur at a voltage of 6 V , for a $\mathrm{V}_{\mathrm{BB}}=10 \mathrm{~V}$ its stand off ratio is found to be
(a) 1.66
(b) 0.60
(c) 0.54
(d) 0.51
289. Which switching device was used in the first generation computers?
(a) Vacuum tubes
(b) Transistors
(c) IC's
(d) Diodes
290. Which of the following is not a merit of transistors in place of vacuum tubes?
(a) Transistors are compact
(b) Consume less power
(c) Faster and economical
(d) None of these
291. Which diode is otherwise called as hot carrier diode?
(a) Schottky diode
(b) Tunnel diode
(c) PIN diode
(d) Varactor diode
292. Which one of the following devices is a unipolar one?
(a) PIN diode
(b) Zener diode
(c) PN diode
(d) Schottky diode
293. \qquad is another type of VVC diode.
(a) PN junction diode
(b) Step recovery diode
(c) PIN diode
(d) Schottky diode
294. Tunneling phenomena was invented by
(a) Einstein
(b) Henry Hill
(c) Dr. Fresnel
(d) Dr. Leo Easaki
295. An FET acts as
(a) A variable resistor
(b) A variable capacitor
(c) A variable voltage source
(d) A variable current source
296. The donor impurity must have only \qquad valence electrons.
(a) 2
(b) 3
(c) 4
(d) 5
297. A P-type germanium semiconductor is doped with
(a) Gallium
(b) Gold
(c) Silver
(d) Silicon
298. The Miller indices of the diagonal plane of a cube are
(a) 010
(b) 110
(c) 001
(d) 111
299. The junction capacitance varies
(a) Directly as square root of the voltage
(b) Inversely as square root of the voltage
(c) Directly as cube root of the voltage
(d) Inversely as cube root of the voltage
300. Silicon diode is less suited for low voltage rectifier operation because
(a) Its breakdown voltage is low
(b) It is costly
(c) It is temperature dependent
(d) Its breakdown voltage is high
301. A capacitor C charges to the applied voltage in
(a) Three time constants
(b) Five time constants
(c) Six time constants
(d) Ten time constants
302. A time constant is
(a) A relative measure of time
(b) An absolute measure of time
(c) Not an absolute measure of time
(d) Both (a) and (c)
303. It will take \qquad time constants to discharge the capacitor almost completely.
(a) One
(b) Two
(c) Four
(d) Five
304. A 0.25 microfarads capacitor is charged through a 2.2 M Ohms resistor towards an applied voltage of 50 V . In one time constant, the capacitor would have charged to
(a) 11.6 V
(b) 21.6 V
(c) 31.6 V
(d) 41.6 V
305. The phenomenon "conductivity modulation" is exhibited by
(a) UJT
(b) Diac
(c) SCR
(d) Triac
306. The intrinsic stand-off ratio is dependent on
(a) Current carrying capacity of UJT
(b) Geometry of UJT
(c) Voltage handling capacity of UJT
(d) Noise ratio
307. Between the peak point Vp and the valley point Vv of the static emitter characteristics the emitter voltage \qquad as emitter current increases.
(a) Increases
(b) Decreases
(c) Remains constant
(d) Is zero
308. Cermets are
(a) Inductive materials
(b) Capacitive material, resistive materials
(c) Resistive materials
(d) Magnetic materials
309. One angstrom is equal to
(a) 10^{-9} metre
(b) 10^{-11} metre
(c) 10^{-10} metre
(d) 10^{-12} metre
310. The storage time of a $P-N$ junction diode
(a) Decreases with increased reverse bias voltage
(b) Decreases with increased forward bias voltage
(c) Increases with increased reverse bias voltage
(d) None of these
311. The switching speed of a Schottky diode is
(a) Lower than p-n junction diode
(b) Same as p-n junction diode
(c) Higher than p-n junction diode
(d) Can't define
312. The most commonly used configuration of an n-p-n transistor as a switch is
(a) Common collector
(b) Common emitter
(c) Common base
(d) Both common base and common collector
313. N-P-N transistors are preferred ones than P-N-P transistors for digital application because
(a) Electron mobility is more compared to holes mobility
(b) They are cheaper
(c) They are costlier
(d) Easy availability in the market
314. The Schottky diode is
(a) A vacuum device
(b) A metal - semiconductor device
(c) Purely semiconductor device
(d) MOS device
315. For a MOSFET the gate current
(a) Is decedent on drain current
(b) Increases with increase in drain voltage
(c) Decreases with decrease in drain voltage
(d) Is negligibly very small
316. The term "Baud Rate" is defined as
(a) Rate at which parallel data transmission takes place
(b) Rate at which microprocessor operates
(c) Rate at which parallel data are converted to serial data
(d) Rate at which serial data transmission takes place
317. The gate voltage required for the conduction of an n-channel enhanced mode MOSFET having a threshold voltage of 2 V is
(a) 0 V
(b) 1 V
(c) 2 V
(d) More than 2 V
318. A Schottky transistor used as a switch operates between
(a) Cut-off and saturation regions
(b) Cut-off and active regions
(c) Active and saturation regions
(d) None of these
319. For a transistor operating in the saturation region
(a) $\mathrm{I}_{\mathrm{c}} \leq \mathrm{h}_{\mathrm{fe}} \cdot \mathrm{I}_{\mathrm{B}}$
(b) $\mathrm{I}_{\mathrm{c}}>\mathrm{h}_{\mathrm{fe}} \cdot \mathrm{I}_{\mathrm{B}}$
(c) $\mathrm{I}_{\mathrm{c}}=\mathrm{h}_{\mathrm{fe}} \cdot \mathrm{I}_{\mathrm{B}}$
(d) $I_{c}=0$
320. Which one of the following is a unique characteristic of Schottky transistor?
(a) Lower propagation delay
(b) Higher propagation delay
(c) Lower power dissipation
(d) Higher power dissipation
321. Higher switching speed is possible in Schottky transistor than ordinary N-P-N transistor due to
(a) It operates in cut-off and saturation regions
(b) It operates in active and saturation regions
(c) It is prevented from going into saturation
(d) It is prevented from going into cut-off
322. Consider the statements

Statement I: The temperature coefficient of resistance of a semiconductor is negative while that of a metal is positive.
Statement II: A semiconductor behaves as an insulator at $0^{\circ} \mathrm{K}$ while it has some conductivity at room temperature.

Which of the following is/are correct?
(a) Statement I
(b) Statement II
(c) Both statements I \& II
(d) Either statement I or II
323. When a transistor is turned from ON to OFF, the transistor comes to OFF state,
(a) Once the input signal is removed
(b) As soon as the input signal is reversed
(c) As soon as the power supply is switched off
(d) After the excess charge stored in the base region is removed.
324. The delay in the switching mode operation of a pn junction diode is caused due to the
(a) Metallic contact
(b) Small size
(c) Different doping levels at two sides of junction
(d) Excess minority charge stored on the two sides of the junction when it is forward biased.
325. An open input terminal of ECL gate
(a) Will behave asif it is connected tologichighlevel
(b) Will behave as if it is connected to logic low level
(c) Will assume same voltage between logic high and low levels
(d) Will assume a very high voltage causing damage to the device.
326. With respect to semiconductor, identify the valid statement.
I Drift and diffusion occur simultaneously in a semiconductor device.
II Mobility of free electrons is same as that of holes.
III A crystal is not electrically neutral.
IV Semiconductors exhibit negative temperature coefficient.
(a) I
(b) II
(c) III
(d) IV
327. Which one is categorized as P-type impurity?
(a) Arsenic
(b) Boron
(c) Bismuth
(d) Antimony
328. Which one is categorized as N-type impurity?
(a) Bismuth
(b) Indium
(c) Gallium
(d) Boron
329. In which band(s) do the movements of electrons and holes take place?
(a) Valence band
(b) Conduction band
(c) Conduction and valence bands respectively
(d) Neither valence nor conduction band
330. The ratio of majority and minority carriers of an intrinsic semiconductor is
(a) Zero
(b) Infinity
(c) Unity
(d) Very large
331. The ratio of majority and minority carriers of an extrinsic semiconductor is
(a) Zero
(b) Infinity
(c) Unity
(d) Very large
332. Consider the statements given below

Statement I: In FET the generator current is proportional to the input voltage.
Statement II: In BJT, the generator current is proportional to the input current.
Which of the following is valid?
(a) Statement I
(b) Statement II
(c) Both statements I \& II
(d) Either statement I or II
333. Transconductance of JFET is given by
(a) $\frac{\Delta V_{D S}}{\Delta I_{D}}$
(b)
(c)
(d)
334. Ultraviolet radiation is used in IC fabrication for
(a) Diffusion
(b) Masking
(c) Isolation
(d) Metallization
335. FETs are used in an amplifier to obtain
(a) Low input impedance
(b) Low output impedance
(c) High input impedance
(d) High output impedance
336. Which of the following exhibits very high input impedance?
(a) Diode
(b) P-N-P
(c) N-P-N
(d) FET
337. Which one of the following materials does not have a covalent bond?
(a) Silver
(b) Silicon
(c) Organic polymer
(d) Diamond
338. The device having scalar characteristics with that of an ideal voltage source is
(a) FET
(b) P-N-P transistor
(c) Zener diode
(d) MOSFET
339. The device having closer characteristics with an ideal current source is
(a) Vacuum diode
(b) Zener diode
(c) UJT
(d) Transistor in common base mode
340. A piece of copper and another of silicon are cooled from room temperature to $80^{\circ} \mathrm{K}$. The resistance of
(a) Each of them increases
(b) Each of them decreases
(c) Copper increases and silicon decreases
(d) Copper decreases and silicon increases
341. In a conductor, the valence band and the conduction band
(a) Are separated by a small gap
(b) Are separated by a large gap
(c) Are overlapping
(d) Don't exist at all
352. In the symbol of transistor the arrow mark shows
(a) Emitter
(b) Collector
(c) Base
(d) Gate
342. The forbidden in germanium at $0^{\circ} \mathrm{K}$ is
(a) 0.785 eV
(b) 1.21 eV
(c) 1.00 eV
(d) 0.01 eV
343. Einstein's relation is given by
(a)
(b)
(c)
(d)
344. Mobility of electron is highest in
(a) Silicon
(b) Germanium
(c) Gallium arsenide
(d) Carbon
345. The mean free path for electron drift increases with
(a) Purity concentration
(b) Strain hardening
(c) Elastic modulus
(d) Length
346. To make silicon P-type, one must add
(a) Ge
(b) Si
(c) Sb
(d) Ga
347. An N-type semiconductor as a whole is
(a) Positively charged
(b) Negatively charged
(c) Electrically neutral
(d) Can't be defined
348. The peak inverse voltage is the maximum voltage that can be applied to a diode without
(a) Burning
(b) Destruction
(c) Overheating
(d) Charging
349. As the temperature is increased the voltage across a diode carrying a constant current
(a) Increases
(b) Decreases
(c) Remains constant
(d) Alternately increases and decreases
350. The $\mathrm{P}-\mathrm{N}$ junction diode is a
(a) Passive device
(b) Vacuum device
(c) Unilateral device
(d) Bilateral device
351. In an unbiased junction, the thickness of charge depletion region is of the order
(a) $0.005 \mu \mathrm{~m}$
(b) $0.5 \mu \mathrm{~m}$
(c) $5 \mu \mathrm{~m}$
(d) $10^{-10} \mathrm{~m}$
353. The input resistance of a common amplifier tran-sistor is of the order
(a) $1 \mathrm{M} \Omega$
(b) $1 \mathrm{k} \Omega$
(d) $0.001-3$
354. The output characteristics curve of a transistor is much more like those of
(a) A diode
(b) A tetrode
(c) A triode
(d) A pentode
355. The gain of a voltage follower is
(a) Greater than 1
(b) Lesser than 1
(c) Equal to 1
(d) Slightly less than 1
356. Lowest output resistance is obtained in
(a) CB
(b) CE
(c) CC
(d) None of these
357. Transistor is a
(a) Current controlled current device
(b) Current controlled voltage device
(c) Voltage controlled current device
(d) Voltage controlled voltage device
358. The temperature coefficient of a Zener diode changes from negative to positive
(a) Below 5 V
(b) Above 6 V
(c) Between 5 V and 6 V
(d) Exactly at 0 V
359. In an unbiased semiconductor junction, the junction current at equilibrium is
(a) Zero because equal and opposite charges are crossing the junction
(b) Zero because no charges are crossing the junction
(c) Due to diffusion of minority carriers
(d) Due to diffusion of majority carriers
360. Due to thermo-ionic emission, the weight of the metal piece
(a) Increases
(b) Decreases
(c) Remains the same
(d) Varies but can't define
361. Boltzmann diode equation relates
(a) Voltage and temperature characteristics of a junction
(b) Voltage and current characteristics of a junction
(c) Current and temperature characteristics of a junction
(d) Resistance and temperature characteristics of a junction
362. Which of the following is an active device?
(a) Electric bulb
(b) Loudspeaker
(c) Transformer
(d) None of the above
363. The main application of the enhancement mode MOSFET is
(a) Amplification
(b) Switching
(c) Tuning
d) Rectification
364. \qquad indicates how effectively the input voltage controls the output current in a JFET.
(a) Slow rate
(b) Transconductance
(c) Transresistance
(d) Intrinsic stand-off ratio
365. Transconductance is measured in
(a) Mho
(b) Volts
(c) Amperes
(d) Ohms
366. \qquad is preferred form of bias for a JFET amplifier.
(a) Self bias
(b) Voltage divider bias
(c) Two supply bias
(d) Emitter feedback bias
367. Transconductance is basically a/an
(a) AC quantity
(b) DC quantity
(c) Either AC or DC quantity
(d) None of these
368. An ordinary resistor connected across a circuit can be considered as
(a) An active load
(b) A passive load
(c) A switching device
(d) Three terminal device
369. The transconductance JFET at the Q-point is the maximum transconductance which occurs when Vds $=0$.
(a) Less than
(b) Greater than
(c) Equal to
(d) None of the above
370. The main advantage of cascade amplifier is
(a) Low input resistance
(b) Low input capacitance
(c) High output resistance
(d) High output capacitance
371. A current regulator diode is basically a
(a) Zener diode
(b) MOSFET
(c) JFET whose gate and source are tied up
(d) Transistor
372. \qquad is an excellent device for interfacing digital IC's to high power loads.
(a) Depletion mode power MOSFET
(b) Enhancement mode power MOSFET
(c) JFET
(d) Bipolar transistor
373. VMOS transistor exhibits
(a) Negative thermal coefficient
(b) Positive thermal coefficient
(c) Zero thermal coefficient
(d) None of the above
374. VMOS transistor can shut off amperes of current in
(a) Few milli seconds
(b) Few seconds
(c) Few microseconds
(d) Tens of nanoseconds
375. The merits of VMOS transistors as compared to bipolar transistor is/are
(a) No extra changes are stored while in induction
(b) Cannot go into thermal run away
(c) Exhibits negative temperature coefficient
(d) All of the above
376. VMOS transistor is basically
(a) Power transistor
(b) Three diodes connected parallelly
(c) JFET
(d) Enhanced-mode MOSFET
377. A JFET has
(a) One built-in diode
(b) Two built-in diodes
(c) Three built-in diodes
(d) Four built-in diodes
378. The JFET acts as a \qquad along the horizontal part of the drain curve.
(a) Resistor
(b) Current source
(c) Voltage source
(d) Current sink
379. The JFET acts as a \qquad along vertical parts of the drain curve.
(a) Resistor
(b) Current source
(c) Voltage source
(d) Current sink
380. The transconductance curve of JFET which is also called as square law curve is
(a) Straight line
(b) Parabolic
(c) Circular
(d) Wavy
381. Which of the following is/are valid statement(s)?

I The gate of a JFET is forward biased hence acts as a voltage controlled device
II The gate of a JFET is reversed biased, hence acts as a voltage controlled device
III The gate of a JFET is reverse biased, hence acts as voltage controlled device
(a) I
(b) II
(c) I and II
(d) I, II and III
382. The point above the drain voltage, where there is no increase in drain current in a JFET is called as
(a) Breakdown point
(b) Pinch off point
(c) Knee point
(d) Critical point
383. The depletion region is one which has
(a) Immobile charges
(b) Mobile charges
(c) Atoms
(d) Molecules
384. Constantan is a/an
(a) Alloy
(b) Metal
(c) Nonmetal
(d) Isotope
385. The nature of atomic bond found in diamond is
(a) Tetravalent
(b) Covalent
(c) Metallic
(d) Ionic
386. The conductivity of a P-type semiconductor is
(a) $\sigma=q \mu_{0} \mathrm{P}$
(b) $\sigma=q \mu_{0}$
(c) $\sigma=\mathrm{q} \mu_{0} \mathrm{n}$
(d) $\sigma=q p$
387. The gate cut-off and pinch-off voltages of JFET have
(a) Same magnitude and sign
(b) Different magnitudes but same sign
(c) Same magnitude but different signs
(d) Different magnitudes and signs
388. The pinch-off voltage of JFET has a same magnitude as that of
(a) Gate voltage
(b) Gate source voltage
(c) Drain-source voltage
(d) None of these
389. The current gain of a transistor is
(a) The ratio of collector current to emitter current
(b) The ratio of collector current to base current
(c) The ratio of base current to collector current
(d) The ratio of emitter current to collector current
390. The base current of a transistor is typically
(a) Less than emitter current
(b) Greater than emitter current
(c) Same as emitter current
(d) Equal to the sum of emitter and collector currents
391. The free electrons have \qquad in the base region of a transistor.
(a) Short lifeterm
(b) Long lifeterm
(c) No lifeterm at all
(d) Infinite lifeterm
392. The free electrons recombine with a hole in the base region of a transistor to become
(a) Free electrons
(b) Valence electrons
(c) Atom
(d) Majority carrier
393. A transistor acts as a
(a) Diode and voltage source
(b) Diode and current source
(c) Diode and power supply
(d) Diode and resistance
394. The knee voltage of a PN junction diode is approximately equal to the
(a) Forward voltage
(b) Applied voltage
(c) Breakdown voltage
(d) Potential
395. The capacitance of a varactor diode increases, when the reverse voltage across it is
(a) Decreased
(b) Increased
(c) Kept constant
(d) None of the above
396. A Zener diode
(a) Is a battery under forward biased condition
(b) Acts like battery when it breakdowns
(c) Is a switch
(d) Is a device having barrier potential more than 5 V
397. A back diode
(a) Is ordinary Zener diode
(b) Is used to rectify strong signals
(c) Conducts better in the forward than in the reverse directions
(d) Is used to rectify weak signals whose peak amplitudes are between 0.1 V and 0.7 V
398. Exposure of insulating material to moisture causes an increase in
(a) Dielectric loss
(b) Dielectric constant
(c) Dielectric strength
(d) Insulation resistance
399. $\mathrm{Cu}_{2} \mathrm{MnAl}$ is a
(a) Semiconductor
(b) Ferrimagnetic material
(c) Paramagnetic material
D) Ferromagnetic material
400. Soft magnetic material is
(a) Tungsten steel
(b) Alcomax
(c) Bismuth
(d) Iron
401. Ferrimagnetic materials are generally used as
(a) Conductors
(b) Insulators
(c) Semiconductors
(d) Resistors
402. Identify \mathbf{N}-type impurity from the following
(a) Fe
(b) Ga
(c) Sb
(d) B
403. Which one of the following is a superconductive material?
(a) Gold
(b) Silver
(c) Mercury
(d) Copper
404. Facing fraction of simple cube is
(a) 6.48
(b) 0.52
(c) 0.65
(d) 0.89
405. Air exhibits
(a) Ferromagnetism
(b) Ferrimagnetism
(c) Paramagnetism
(d) Antiferromagnetism
406. The main advantage of a point contact diode is that
(a) The ratio of forward current to reverse current is very high
(b) Low input impedance
(c) Its cut-in voltage is equal to zero
(d) Its reverse resistance is infinite
407. Match the lists.

List I

(Band gap in eV)
A. 0.67
B. 1.1
C. 1.4
D. 2.4
(a) A-4, B-3, C-1, D-2
(b) A-3, B-2, C-1, D-4
(c) $\mathrm{A}-4, \mathrm{~B}-1, \mathrm{C}-3, \mathrm{D}-2$
(d) A-2, B-3, C-1, D-4

List II
 (Material)

1. GaAs
2. Cadmium sulphate
3. Silicon
4. Germanium
5. Match the given lists.

List I

(Name of the device)
A. Diode
B. Tunnel diode
C. Zener diode
D. PIN diode

List II

(Application)

1. Rectification
2. Microwave switching
3. As oscillator
4. Voltage stabilization
(a) A-1, B-3, C-4, D-2
(b) A-1, B-4, C-3, D-2
(c) A-1, B-2, C-4, D-3
(d) A-2, B-4, C-3, D-1

409 The output characteristics of a JFET is similar to
(a) Triode
(b) Pentode
(c) Thyratron
(d) Tetrode
410. Internal heating in a capacitor is mainly due to
(a) Dielectric charge
(b) Leakage resistance
(c) Electron movement
(d) Plate dimension
411. The capacitance of a parallel plate capacitor is not affected by
(a) Area of plates
(b) Dielectric medium
(c) Distance between the plates
(d) Thickness of the plates
412. According to Coulomb's first law
(a) Like charges attract each other
(b) Like charges repel each other
(c) There is no force between the charges
(d) None of these
413. Varistors are
(a) Carbon resistors
(b) Rheostats
(c) Non linear resistors
(d) Potentiometers
414. Resistivity of a semiconductor depends upon
(i) Atomic structure of the semiconductor
(ii) Shape of the semiconductor
(iii) Length of the semiconductor

Of these statements
(a) (i) is correct
(b) (ii) is correct
(c) (iii) is correct
(d) (i) and (iii) are correct
415. The impurity atoms in semiconductors
(a) Inject more charge carriers
(b) Reduce the energy gap
(c) Increase the kinetic energy of valence electrons
(d) All of the above
416. The Hall angle of a metal sample is
(a) Independent of the magnetic flux density B
(b) Independent of the carrier mobility
(c) Independent of the density of free carriers
(d) Dependent on magnetic flux density
417. $\mathrm{I}_{\text {свO }}$ in a transistor can be reduced by
(a) Reducing I_{B}
(b) Reducing V_{CC}
(c) Reducing I_{E}
(d) Reducing the temperature
418. Mass of a proton is
(a) $1.67 \times 10^{-24} \mathrm{~kg}$
(b) $1.67 \times 10^{-25} \mathrm{~kg}$
(c) $1.67 \times 10^{-26} \mathrm{~kg}$
(d) $1.67 \times 10^{-27} \mathrm{~kg}$
419. The kinetic energy of a bounded electron is
\qquad that of an unbounded electron.
(a) Less than
(b) Twice than
(c) Greater than
(d) Same as
420. Superconductivity is due to
(a) All electrons having Fermi energy at $0^{\circ} \mathrm{K}$
(b) All electrons interacting in the super conducting state
(c) Crystal structure having no atomic vibration at $0^{\circ} \mathrm{K}$
(d) Crystal structure having infinite atomic vibration at $0^{\circ} \mathrm{K}$
421. A linear resistor is a
(a) Current controlled resistor
(b) Voltage controlled resistor
(c) Both (a) and (b)
(d) Neither (a) nor (b)
422. A capacitor with no initial charge at $t=\mu$ acts as a
(a) Short circuit
(b) Open circuit
(c) Voltage source
(d) Current source
423. Donor type impurities
i. Have five valence electrons
ii Create excess free electrons
iii Are used to make n-type semiconductors
iv Have three valence electrons
Of these statements
(a) i and iv are correct
(b) i, ii and iii are correct
(c) ii, iii and iv are correct
(d) iii and iv are correct
424. Ionic bond in solid depends on
(a) Transfer rate of electrons
(b) Sharing of electrons
(c) Electric dipole
(d) All of the above
425. A material is said to be superconductive when its resistance is
(a) Infinity
(b) Zero
(c) Negative
(d) Very small
426. The type of bonding observed in graphite is
(a) Metallic
(b) Covalent
(c) van der Waals
(d) Both (b) and (c)
427. The temperature at/beyond which ferroelectric materials lose their ferroelectric properties is called as
(a) Curie temperature
(b) Absolute temperature
(c) Inversion temperature
(d) Critical temperature
428. Ferro-electric materials are widely used as
\qquad transducers.
(a) Active
(b) Passive
(c) Electromechanical
(d) Crystal
429. Match the items given in list I with those in list II.

List I

(Materials)
(A) Conductors
(B) Insulators
(C) Germanium
(D) Silicon

List II
(Forbidden energy gap)

1. LargeeV
2. Zero eV
3. 1.12 eV
4. $\quad 0.72 \mathrm{eV}$
(a) A-4, B-3, C-1, D-2
(b) A-2, B-1, C-3, D-4
(c) A-1, B-2, C-4, D-3
(d) A-2, B-1, C-4, D-3
5. Identify the wrong statements
i. Asbestos is least hygroscopic
ii. Asbestos is used as insulation in high voltage installations
iii. Asbestos are neither mechanically strong nor flexible
(a) i
(b) ii
(c) iii
(d) i and iii
6. Barium titanate is a
(a) Piezo-electric material
(b) Ferro-electric material
(c) Semiconductor material
(d) Both piezo-electric and ferro-electric material
7. Insulation used in commutator is
(a) Wood
(b) PVC
(c) Mica
(d) Glass
8. Dielectric materials are essentially
(a) Insulating materials
(b) Ferro-electric materials
(c) Ferri-electric materials
(d) Superconducting materials
9. The property of bakelite is/are
(a) Hardness
(b) Uncombustibility
(c) Highly inflammable
(d) Both (a) and (b)
10. Hysteresis loss is
(a) Proportional to f
(b) Proportional to $1 / \mathrm{f}$
(c) Proportional to f^{2}
(d) Proportional to $1 / \mathrm{f}^{2}$
11. The magnetic material employed for VHF application is
(a) Silicon steel
(b) Alnico
(c) Cobalt salt
(d) Ferrite
12. Soft magnetic material is
(a) Tungsten steel
(b) Iron
(c) Alcomax
(d) Bismuth
13. Piezo-electricity is observed in
(a) Mica
(b) Nickel
(c) Glass
(d) Quartz
14. Rochelle salt, a peizo-electric crystal has
(a) One curie point
(b) Two curie points
(c) Three curie points
(d) No curie point
15. Basically iron is a
(a) Ferro-magnetic material
(b) Ferri-magnetic material
(c) Para-magnetic material
(d) Anti-ferromagnetic material
16. A $0^{\circ} \mathrm{K}$, germanium acts as
(a) Insulator
(b) Superconductor
(c) Dielectric
(d) Semiconductor

442 With the fall in temperature, the receptivity of metals normally
(a) Increases
(b) Tends to be zero
(c) Remains unchanged
(d) Decreases first and then increases

443 The transport phenomenon in conductor is due to
(a) Electric field
(b) Magnetic field
(c) Electro-magnetic field
(d) None of the above
444. Power loss in an electrical circuit can take place in
(a) Inductance only
(b) Capacitance only
(c) Resistance only
(d) Inductance and resistance
445. The dynamic resistance of a parallel resonant circuit is given by
(a) $\mathrm{LC} / \mathrm{R}_{\mathrm{L}}$
(b) $\mathrm{LCR}_{\mathrm{L}}$
(c) $C / L R_{L}$
(d) $L / C R_{L}$
446. A choke coil of inductance L and series resistance R is shunted by a capacitor C. The dynamic impedance of the resonant circuit would be
(a) R / LC
(b) $C / R L$
(c) L / RC
(d) $1 /$ RLC
447. A series R-C circuit is suddenly connected to a dc voltage of V volts. The current in the series circuit just after the switch is closed is equal to
(a) Zero
(b) $V / R C$
(c) VC / R
(d) V / R
448. A series $R L$ circuit with $R=100 \mathrm{ohms}, \mathrm{L}=50 \mathrm{~Hz}$ is supplied to a dc source of 100 V . The time taken for the current to rise 70% of its steady state value is
(a) 0.3 seconds
(b) 0.6 seconds
(c) 0.9 seconds
(d) 1.0 seconds
449. A capacitance C is charged through a resistance R, the time constant of the charging circuit is given by
(a) R / C
(b) $1 / \mathrm{RC}$
(c) RC
(d) C / R
450. With the increase in temperature, the resistance of the carbon
(a) Increases
(b) Decreases
(c) Remains same
(d) Becomes zero
451. On placing a dielectric in an electric field, the field strength
(a) Increases
(b) Decreases
(c) Remains constant
(d) Reduces to zero
452. Coulomb's law for the force between electric charges most closely resembles with
(a) Newton's law of motion
(b) Law of conservation of energy
(c) Gauss theorem
(d) Newton's law of gravitation
453. Tunnel diode is
(a) Linear resistor
(b) Current dependent resistor
(c) Voltage dependent resistor
(d) Non-linear resistor
454. A UJT has
(a) Anode, cathode and gate
(b) Two anodes and one gate
(c) Emitter, base and collector
(d) One emitter and two bases
455. Vulcanized rubber
(a) Is produced from trans-polyisoprene
(b) Is also known as neoprene
(c) Contains 20% of sulphur
(d) Is produced from cis-polyisoprene
456. Thermoplastic and thermoset polymers differ in
(a) Electrical properties
(b) Glass transition temperature
(c) Mechanical properties
(d) Thermal properties
457. The acceptor atoms in a P-type semiconductor at normal temperature
(a) Carry a positive charge
(b) Carry a negative charge
(c) Are neutral
(d) Are ions
458. Electroid transformation in alloys is \qquad reaction
(a) Solid to solid
(b) Solid to liquid
(c) Liquid to solid
(d) Liquid to liquid
459. Photoluminescence which persists for some period after excitation is known as
(a) Phosphorescence
b) Tri-luminescence
(c) Fluorescence
(d) Bioluminescence
460. Germanium photodiodes have dark currents in the order of
(a) 5 mA
(b) 10 mA
(c) 25 mA
(d) 10 A
461. Which one of the following is a Square law device?
(a) Zener diode
(b) Crystal diode
(c) Tunnel diode
(d) Varactor diode
462. A PIN diode is
(a) A metal semiconductor diode
(b) A microwave switch
(c) A microwave detector
(d) None of these
463. One of the following microwave diodes is suitable for very low power oscillators
(a) Tunnel diode
(b) Gunn diode
(c) PIN diode
(d) Zener diode
464. Charge on the capacitor is
(a) directly related to voltage and inversely related to capacitance
(b) directly related to capacitance and inversely related to voltage
(c) directly related to both voltage and capacitance
(d) Inversely proportional to both voltage and capacitance
465. Dielectric constant relates to
(a) Comparative charge stored for a given material versus air
(b) The fact that the dielectric doesn't have charge characteristics
(c) The insulating properties of the nonconducting mediums
(d) None of the above
466. Since dielectric materials are nonconductive
(a) Capacitors leakage resistance is finite
(b) Capacitors leakage resistance is infinite
(c) A capacitor cannot pass current through the circuit
(d) None of the above
467. In a series dc circuit containing both a resistor and a capacitor, as the capacitor charges
(a) The voltage across the resistor decreases
(b) The voltage across the resistor increases
(c) The voltage across the resistor remains unaffected
(d) None of the above
468. Active devices used in digital circuit generally operate as
(a) Amplifiers
(b) Switches
(c) Rectifiers
(d) Wave form generators
469. The devices commonly used for making digital circuits are
(a) Mechanical switches
(b) Relays
(c) Vacuum tubes
(d) Semiconductor devices
470. The time required to switch a P-N junction from ON to OFF is equal to
(a) Zero
(b) Storage time
(c) Switching time
(d) Transition time
471. The storage time of a p-n junction
(a) Decreases with increased reverse-bias
(b) Decreases with increased forward-bias
(c) Increases with increased reverse-bias
(d) Increases with increased forward-bias
472. The maximum operating frequency of a diode when used as a switch
(a) Depends on the diode characteristics and switching voltages
(b) Depends on switching voltages
(c) Depends on diode characteristics
(d) None of the above
473. Fast switching of $\mathbf{P}-\mathrm{N}$ junction requires
(a) A large current in reverse direction
(b) Zero current in reverse direction
(c) Reverse saturation current in reverse direction
(d) None of the above
474. For fastest switching operation, it is preferable to use
(a) P-N junction diode
(b) Vacuum diode
(c) Zener diode
(d) Schottky diode
475. The most commonly used configuration of transistor as switch is
(a) CB
(b) CC
(c) CE
(d) CB or CC

476 When used as switch, a Schottky transistor switches between
(a) Cut-off and active regions
(b) Cut-off and saturation regions
(c) Active and saturation regions
(d) Different operation points in the active region
477. In switching application, CE configuration is preferred because
(a) It requires low voltage
(b) It requires only one power source
(c) Of easier construction
(d) Of negligible reverse saturation current
478. BJT with $h_{f e}=200, I_{b}=10 \mathrm{~mA}$ and $I_{C}=4 \mathrm{~mA}$ is operating in
(a) Active region
(b) Cut-off region
(c) Saturation region
(d) None of these
479. Schottky transistors are preferred over normal transistors in digital applications because of their
(a) Higher propagation delay
(b) Higher power dissipation
(c) Lower propagation delay
(d) Lower power dissipation
480. For a MOSFET, the gate current
(a) Is dependent on drain current
(b) Is negligibly small
(c) Is independent of gate voltage
(d) Increases with increase in gate voltage
481. For an n-channel enhancement mode MOSFET, the drain current
(a) Decreases with increases in drain voltage
(b) Decreases with decrease in drain voltage
(c) Increases with increases in gate voltage
(d) Increases with decrease in gate voltage
482. The delay in the switching mode operation of a pn junction diode is mainly due to
(a) Metallic contacts
(b) Different doping levels
(c) Minority charge storage in the junction during forward biased condition
(d) Majority carriers in forward biased condition
483. When separation between two charges is increased, the potential energy
(a) Increases
(b) Decreases
(c) Remains constant
(d) Either (a) or (b)
484. The saturation current in a diode depends upon
(a) Plate voltage
(b) Cathode temperature
(c) Cathode material
(d) Separation between cathode and plate
485. At zero kelvin, a piece of germanium becomes
(a) Semiconductor
(b) Good conductor
(c) Bad conductor
(d) None of these
486. When an N-P-N transistor is used as an amplifier then
(a) Electrons move from base to collector
(b) Electrons move from emitter to base
(c) Electrons move from collector to base
(d) Holes move from base to emitter
487. In a semiconductor crystal, if the current flows due to breakage of crystal bonds, then the semiconductor is called
(a) Acceptor
(b) Donor
(c) Intrinsic semiconductor
(d) Extrinsic semiconductor
488. If a transistor emitter current is 2 mA , the collector current is
(a) Greater than 2 mA
(b) Less than 2 mA
(c) Equal to 2 mA
(d) Equal to 4 mA
489. A photodiode is used in reverse bias because
(a) Majority of electron-hole pairs swept are reversed across the junction
(b) Only one side is illuminated
(c) Reverse current is small compared to photocurrent
(d) Reverse current is large compared to photocurrent
490. In a phototransistor, the base current is
(a) Set by a bias voltage
(b) Directly proportional to light
(c) Inversely proportional to light
(d) Square to light intensity
491. A laser diode can be fabricated using
(a) Germanium
(b) Silicon
(c) Gallium arsenide
(d) Gallium phosphide
492. The general condition for a phototransistor is
(a) Common base configuration
(b) Common collector configuration
(c) Common emitter configuration
(d) Darlington-pair configuration
493. When a phototransistor is reverse biased, is kept in dark condition, the current flowing through the device corresponds to
(a) Zero current
(b) Reverse saturation current
(c) Maximum flow of device current
(d) Minimum flow of device current
494. Which of the following devices is suitable for very low power oscillator circuit only?
(a) TRAPATT diode
(b) IMPATT diode
(c) Gunn diode
(d) Tunnel diode
495. The transferred-electron bulk effect occurs in
(a) Germanium
(b) Gallium arsenide
(c) Silicon
(d) Metal-semiconductor junction
496. The colour of an LED can be changed by
(a) Using different band gap semiconductors
(b) Varying the doping level of the semiconductor
(c) Increasing applied voltage
(d) None of the above
497. A Ge atom contains
(a) Four valence electrons
(b) Six valence electrons
(c) Four protons
(d) Six protons
498. At $25^{\circ} \mathrm{C}$, a Zener diode rates at 2 watts, its power rating at $50^{\circ} \mathrm{C}$ will be
(a) Zero watts
(b) Less than 1 watt
(c) Greater than 2 watts
(d) Less than 2 watts
499. In any conductor, Hall voltage V_{H} is
(a) Directly proportional to B
(b) Directly proportional to $1 / \mathrm{B}$
(c) Directly proportional to B^{2}
(d) Directly proportional to $1 / \mathrm{B}^{2}$
500. Drift current in germanium is caused by
(a) Concentration gradient of charge carriers
(b) Thermal agitation of crystal lattice
(c) Incidence of light energy
(d) Applied electric field
501. In a given semiconductor, Fermi level E is proportional to ($\mathrm{n}=$ total number of free electrons per unit volume).
(a) n
(b) $\mathrm{n}^{1 / 2}$
(c) $\mathrm{n}^{2 / 3}$
(d) $\mathrm{n}^{4 / 3}$
502. FET has offset voltage of about
(a) 0.2 volts
(b) 0.6 volts
(c) 1.0 volts
(d) 3.6 volts
503. At $300^{\circ} \mathrm{K}$, the forbidden energy gap in germanium is
(a) 0.543 eV
(b) 0.632 eV
(c) 0.72 eV
(d) 0.89 eV
504. Semiconductors in pure form are poor conductors because
(a) They have no valence electrons
(b) All valence electrons are in electron pairs
(c) They have a large number of holes
(d) They have fewer electrons than protons
505. When a pure semiconductor is heated
(a) It becomes metal
(b) Its atomic structure collapses
(c) Its resistance increases
(d) Its resistance decreases
506. In a pure semiconductor, electric current is due to
(a) Holes
(b) Electrons
(c) Both holes and electrons
(d) Valence electrons
507. Merit of four-point probe method of determining resistivity is that
(a) It needs very small current
(b) It gives the average resistivity
(c) It gives the resistivity at a localized region of the sample
(d) It gives the exact resistivity of the bulk sample with respect to voltage variations
508. The n type impurity
(a) Can be added to Ge but not to Si
(b) Can be added to Si but not to Ge
(c) Creates excess holes
(d) Creates excess electrons
509. Resistivity of semiconductor depends on
(a) The length of the specimen
(b) Cross-sectional area of the specimen
(c) Volume of the specimen
(d) Atomic nature of the semiconductor
510. A hole is the vacancy created when
(a) Free electron moves on application of electric field
(b) An electron breaks its covalent bond
(c) An atom core moves
(d) An electron reverts from conduction band to valency band
511. When a free electron is recaptured by a hole, the process is called
(a) Diffusion
(b) Restoration
(c) Recombination
(d) Drift
512. P-type semiconductor is
(a) Positively charged
(b) Electrically neutral
(c) Negatively charged
(d) Both (a) and (b)
513. An n-type semiconductor is
(a) Positively charged
(b) Negatively charged
(c) Both (a) and (b)
(d) Electrically neutral
514. LEDs fabricated from gallium arsenide emit radiation in the
(a) Visible range
(b) Infrared region
(c) Ultraviolet region
(d) Ultrasonic region
515. At room temperature, resistivity of pure silicon is expressed as
(a) $230 \mathrm{Ohms}-\mathrm{cm}$
(b) 2300 Ohms-cm
(c) $23000 \mathrm{Ohms}-\mathrm{cm}$
(d) $230000 \mathrm{Ohms}-\mathrm{cm}$
516. Valence electrons are found
(a) In the nucleus
(b) In the innermost shell
(c) In the outermost shell
(d) As free electrons in an atom
517. The diffusion constant for holes in germanium is found to be
(a) $13 \mathrm{~cm}^{2} / \mathrm{s}$
(b) $28 \mathrm{~cm}^{2} / \mathrm{s}$
(c) $32 \mathrm{~cm}^{2} / \mathrm{s}$
(d) $47 \mathrm{~cm}^{2} / \mathrm{s}$
518. The relative dielectric constant of silicon is
(a) 6
(b) 10
(c) 12
(d) 14
519. In semiconductor, the rate of diffusion of charge carriers depends on
(a) Concentration gradient
(b) Mobility
(c) Both (a) and (b)
(d) Either (a) or (b)
520. In p-type semiconductor
(a) $\mathrm{n}=\mathrm{p}$
(b) $\mathrm{p}<\mathrm{n}$
(c) $\mathrm{n}<\mathrm{p}$
(d) $p \gg n$
521. When an atom loses one electron,
(a) It becomes positive ion
(b) It becomes negative ion
(c) It becomes neutral
(d) It also loses one proton
522. At $300^{\circ} \mathrm{K}$, the forbidden energy gap in silicon is
(a) 0.78 eV
(b) 1.21 eV
(c) 0.72 eV
(d) 1.10 eV
523. An intrinsic semiconductor at absolute zero temperature
(a) Acts as a good conductor
(b) Acts as a good insulator
(c) Has only few holes and electrons
(d) Has only few holes but no electrons
524. Unijunction transistor
(a) Is a bulk semiconductor device
(b) Has two p-n junctions
(c) Is a unipolar device
(d) Has one p-n junction
525. In Schottky barrier diode, conduction is
(a) Entirely by electrons
(b) Entirely by holes
(c) Mainly by electrons and partially by holes
(d) Mainly by holes and partially by electrons
526. Identify from the following, the diode which doesn't exhibit negative resistance characteristics.
(a) Gunn diode
(b) Tunnel diode
(c) LSA diode
(d) IMPATT diode
527. The major application of tunnel diode is
(a) As voltage controllable device
(b) As switching device in digital circuits
(c) As oscillator
(d) As rectifier
528. Energy required to break a covalent bond in a semiconductor is
(a) Equal to 1.6 eV
(b) Greater in Ge than in Si
(c) Equal to the width of the forbidden energy gap
(d) None of the above
529. Temperature coefficient of resistance of a pure semiconductor specimen is
(a) Zero
(b) Positive
(c) Negative
(d) None of the above
530. Forbidden energy gap between the valence band and conduction band is least in the case of
(a) Impure silicon
(b) Pure silicon
(c) Pure germanium
(d) Mica
531. In germanium an electron in the conduction band
(a) Has same energy as an electron in valence band
(b) Has less energy as compared to an electron in valence band
(c) Has greater energy as compared to an electron in valence band
(d) Has zero charge

In UJT, the value of stand-off ratio is
(a) 0.2
(b) 0.4
(c) 0.7
(d) 0.9
533. Zener breakdown results due to
(a) Strong electric field across the junction
(b) Thermal decomposition
(c) Impact ionization
(d) Emission of free electrons
534. \qquad utilizes the cumulative multiplication principleof carriers through field induce d impact ionization.
(a) Zener diode
(b) Varactor diode
(c) PIN diode
(d) Avalanche diode
535. Tunnel diode is basically a junction diode with
(a) High doping in p region alone
(b) High doping in n region alone
(c) High doping in both p and n regions
(d) Low doping in both p and n regions
536. In a tunnel diode, depletion layer width is of the order
(a) 100 Angstroms
(b) 0.1 Micron
(c) 1 Micron
(d) 5 Microns
537. On increasing the current through the Zener diode by a factor of 2 , the voltage across the diode
(a) Gets doubled
(b) Becomes 4 times
(c) Becomes half
(d) Remains the same
538. The dynamic resistance of a Zener diode
(a) Increases with increase in current
(b) Decreases with increase in current
(c) Decreases with decrease in current
(d) Is independent of variation in current
539. In n-type germanium with boron impurity, the ionization energy is about
(a) 0.002 eV
(b) 0.010 eV
(c) 0.100 eV
(d) 1.000 eV
540. In p-type semiconductor
(a) Holes form the majority carrier
(b) Free electrons form the minority carrier
(c) Hole density is equal to electron density
(d) It is formed by adding pentavalent impurity
541. In an intrinsic semiconductor, Fermi level represents the energy level with probability of its occupation of
(a) 0 per cent
(b) 25 per cent
(c) 50 per cent
(d) 75 per cent
542. In germanium, medium doping corresponds to impurity of the order
(a) 1 part in 10^{5}
(b) 1 part in 10^{4}
(c) 1 part in 10^{3}
(d) 1 part in 10^{2}
543. Forbidden energy gap between the valence and conduction bands is least in the case of
(a) Pure Si
(b) Pure Ge
(c) Mica
(d) Impure Si
544. Hole in a lattice is defined as
(a) Free proton
(b) Free neutron
(c) Acceptor ion
(d) Vacancy created by removal of electron from covalent bond.
545. In germanium, when atoms are held together by the sharing of valence electrons
(a) Each shared atom leaves a hole
(b) Valence electrons are free to move away from the nucleus
(c) They form reversible covalent bonds
(d) They form irreversible covalent bonds
546. Seed crystal used in crystal growth is
(a) A small crystal formed out of epitaxial growth
(b) A signal crystal with a specific orientation
(c) A signal crystal containing acceptor impurity
(d) A signal crystal containing donor impurity
547. Crystal structure possessing imperfection causes
(a) Increased mobility
(b) Decreased mobility
(c) Increased conductivity
(d) Decreased conductivity
548. Through repeated zone refining, the residual impurity in a semiconductor is of the order
(a) 1 part in 10^{4}
(b) 1 part in 10^{7}
(c) 1 part in 10^{9}
(d) 1 part in 10^{11}
549. Purification of silicon is difficult because of
(a) Its high surface tension
(b) Its crystalline nature
(c) Its high melting point
(d) Its high resistivity
550. The conduction band
(a) Has same energy as forbidden band
(b) Is a range of energies corresponding to the free electrons
(c) Is seen very close to forbidden band
(d) None of these
551. Which is the initial process to be followed in preparing devices from a semiconductor block?
(a) Crystal formation
(b) Crystal pulling
(c) Purification
(d) Wafering
552. Epitaxial growth is best suited for
(a) Growing polycrystalline pure silicon
(b) Growing crystal of several inch thickness
(c) Very thick single crystal on a substrate
(d) Very thin single crystal on a substrate
553. Excess majority carriers are the carriers which are
(a) Equal to the number of hole concentration
(b) In excess of the equilibrium number
(c) Minority carriers in P-type semiconductor
(d) Thermally generated
554. At room temperature intrinsic carrier concentration is higher in germanium than in silicon due to
(a) Larger atomic number
(b) Greater atomic weight
(c) High carrier mobility
(d) Smaller energy gap

ANSWERS

1. (a)	2. (a)	3. (c)	4. (b)	5. (c)	6. (c)	7. (d)	8. (d)
9. (b)	10. (c)	11. (a)	12. (d)	13. (b)	14. (d)	15. (d)	16. (a)
17. (b)	18. (d)	19. (a)	20-(b)	21. (c)	22. (b)	23. (b)	24. (a)
25. (b)	26. (a)	27. (c)	28. (b)	29. (a)	30. (c)	31. (a)	32. (c)
33. (d)	34. (c)	35. (d)	36. (c)	37. (b)	38. (c)	39. (b)	40. (d)
41. (c)	42. (c)	43. (b)	44. (d)	45. (a)	46. (a)	47. (d)	48. (d)
49. (b)	50. (c)	51. (a)	52. (c)	53. (a)	54. (b)	55. (c)	56. (a)
57. (b)	58. (c)	59. (a)	60. (c)	61. (d)	62. (d)	63. (c)	64. (a)
65. (a)	66. (c)	67. (d)	68. (b)	69. (b)	70. (b)	71. (c)	72. (d)
73. (a)	74. (c)	75. (d)	76. (a)	77. (b)	78. (d)	79. (d)	80. (b)
81. (d)	82. (d)	83. (d)	84. (b)	85. (d)	86. (b)	87. (b)	88. (c)
89. (c)	90. (b)	91. (d)	92. (a)	93. (d)	94. (d)	95. (a)	96. (d)
97. (d)	98. (c)	99. (c)	100. (c)	101. (d)	102. (c)	103. (b)	104. (d)
105. (c)	106. (a)	107. (d)	108. (d)	109. (c)	110. (c)	111. (d)	112. (b)
113. (a)	114. (a)	115. (a)	116. (b)	117. (c)	118. (c)	119. (c)	120. (a)
121. (a)	122. (a)	123. (b)	124. (d)	125. (a)	126. (c)	127. (d)	128. (d)
129. (a)	130. (a)	131. (a)	132. (a)	133. (b)	134. (b)	135. (c)	136. (a)
137. (d)	138. (a)	139. (b)	140. (c)	141. (d)	142. (c)	143. (b)	144. (a)
145. (d)	146. (c)	147. (c)	148. (a)	149. (b)	150. (c)	151. (a)	152. (a)
153. (c)	154. (b)	155. (a)	156. (a)	157. (b)	158. (c)	159. (d)	160. (a)
161. (d)	162. (a)	163. (c)	164. (b)	165. (a)	166. (b)	167. (a)	168. (c)
169. (d)	170. (b)	171. (c)	172. (d)	173. (d)	174. (c)	175. (b)	176. (c)
177. (a)	178. (d)	179. (c)	180. (c)	181. (d)	182. (c)	183. (a)	184. (c)
185. (d)	186. (d)	187. (d)	188. (b)	189. (b)	190. (d)	191. (b)	192. (c)
193. (c)	194. (d)	195. (c)	196. (d)	197. (d)	198. (a)	199. (a)	200. (c)
201. (c)	202. (b)	203. (b)	204. (c)	205. (d)	206. (a)	207. (d)	208. (b)
209. (b)	210. (c)	111. (a)	212. (c)	213. (b)	214. (a)	215. (c)	216. (c)
217. (d)	218. (a)	219. (d)	220. (c)	221. (d)	222. (b)	224. (a)	225. (a)
226. (a)	227. (b)	228. (d)	229. (b)	230. (d)	231. (b)	232. (d)	233. (d)
234. (d)	235. (b)	236. (a)	237. (b)	238. (c)	239. (c)	240. (a)	241. (a)
242. (b)	243. (b)	244. (d)	245. (d)	246. (d)	247. (a)	248. (d)	249. (c)
250. (b)	251. (d)	252. (b)	253. (d)	254. (d)	255. (c)	256. (c)	257. (d)
258. (d)	259. (c)	260. (c)	261. (c)	262. (d)	263. (d)	264. (a)	265. (c)
266. (a)	267. (d)	268. (a)	269. (a)	270. (d)	271. (a)	272. (b)	273. (c)
274. (c)	275. (a)	276. (c)	277. (a)	278. (a)	280. (c)	281. (a)	282. (c)
283. (d)	284. (c)	285. (d)	286. (a)	287. (a)	288. (b)	289. (a)	290. (d)
291. (a)	292. (d)	293. (b)	294. (d)	295. (d)	296. (d)	297. (a)	298. (b)
299. (b)	300. (d)	301. (b)	302. (d)	303. (d)	304. (c)	305. (a)	306. (b)
307. (b)	308. (c)	309. (c)	310. (a)	311. (c)	312. (c)	313. (a)	314. (b)
315. (d)	316. (d)	317. (d)	318. (b)	319. (a)	320. (a)	321. (c)	322. (c)
323. (d)	324. (d)	325. (c)	326. (a)	327. (b)	328. (a)	329. (c)	330. (c)
331. (d)	332. (c)	333. (c)	334. (a)	335. (c)	336. (d)	337. (a)	338. (c)
339. (d)	340. (d)	341. (c)	342. (a)	343. (a)	344. (b)	345. (a)	346. (d)
347. (c)	348. (c)	349. (b)	350. (c)	351. (b)	352. (a)	353. (b)	354. (c)
355. (d)	356. (c)	357. (a)	358. (c)	359. (a)	360. (c)	361. (a)	362,(d)
363. (b)	364. (b)	365. (a)	366. (a)	367. (a)	368. (b)	369. (a)	370. (b)
371. (c)	372. (a)	373. (a)	374. (d)	375. (d)	376. (d)	377. (b)	378. (b)

379. (a)	380. (b)	381. (b)	382. (b)	383. (b)	384. (a)	385. (b)	386. (a)
387. (c)	388. (a)	389. (b)	390. (a)	391. (a)	392. (b)	393. (b)	394. (d)
395. (a)	396. (b)	397. (d)	398. (a)	399. (c)	400. (d)	401. (c)	402. (c)
403. (c)	404. (b)	405. (c)	406. (a)	407. (a)	408. (a)	409. (b)	410. (b)
411. (d)	412. (b)	413. (c)	414. (a)	415. (b)	416. (c)	417. (d)	418. (d)
419. (a)	420. (c)	421. (c)	422. (b)	423. (b)	424. (a)	425. (b)	426. (d)
427. (a)	428. (c)	429. (d)	430. (d)	431. (d)	432. (c)	433. (a)	434. (d)
435. (a)	436. (d)	437. (b)	438. (d)	439. (b)	440. (a)	441. (a)	442. (b)
443. (a)	444. (d)	445. (d)	446. (c)	447. (d)	448. (b)	449. (b)	450. (b)
451. (b)	452. (d)	453. (c)	454. (d)	455. (d)	456. (d)	457. (c)	458. (a)
459. (a)	460. (b)	461. (d)	462. (b)	463. (a)	464. (c)	465. (a)	466. (d)
467. (a)	468. (c)	469. (d)	470. (c)	471. (a)	472. (a)	473. (a)	474. (d)
475. (c)	476. (a)	477. (a)	478. (c)	479. (c)	480. (b)	481. (c)	482. (b)
483. (d)	484. (c)	485. (c)	486. (a)	487. (c)	488. (a)	489. (a)	490. (b)
491. (c)	492. (c)	493. (b)	494. (d)	495. (b)	496. (b)	497. (a)	498. (c)
499. (a)	500. (d)	501. (c)	502. (b)	503. (c)	504. (b)	505. (d)	506. (c)
507. (c)	508. (d)	509. (d)	510. (b)	511. (c)	512. (b)	513. (d)	514. (b)
515. (c)	516. (c)	517. (d)	518. (c)	519. (c)	520. (d)	521. (a)	522. (d)
523. (b)	524. (d)	525. (a)	526. (d)	527. (b)	528. (c)	529. (c)	530. (a)
531. (c)	532. (c)	533. (a)	534. (d)	535. (c)	536. (a)	537. (d)	538. (b)
539. (b)	540. (a)	541. (c)	542. (a)	543. (d)	544. (d)	545. (c)	546. (b)
547. (b)	548. (b)	549. (c)	550. (b)	551. (c)	552. (d)	553. (b)	554. (d)

