| NILASAILA INSTITUTE OF SCIENCE \& TECHNOLOGY |
| :---: |
| SERGARH-756060, BALASORE (ODISHA) |
| (Approved by AICTE\& affiliated to SCTE\&VT, Odisha) |
| LESSON PLAN |
| SUBJECT: Th1. ENGINEERING MATHEMATICS - III |

## CHAPTER WISE DISTRIBUTION OF PERIODS

| SI.No. | Name of the chapter as per the Syllabus | No. of <br> Periods <br> as per <br> the <br> Syllabus | No. of <br> periods <br> actually <br> needed |
| :---: | :--- | :---: | :---: |
| 1 | Complex Numbers | 6 | 6 |
| 2 | Matrices | 4 | 4 |
| 3 | Differential Equations | 10 | 10 |
| 4 | Laplace transforms | 12 | 12 |
| 5 | Fourier Series | 12 | 12 |
| 6 | Numerical Methods | 4 | 4 |
| 7 | Finite difference \& interpolation | 12 | 12 |
| $\quad$ TOTAL |  | 60 | 60 |


| Discipline: <br> EE/EEE | Semester: 3RD | Name of the Teaching Faculty: Mr SUBAS CHANDRA DASH |
| :---: | :---: | :---: |
| Week | Class Day | Theory / Practical Topics |
| 1ST | $1^{\text {st }}$ | 1.Complex Numbers <br> 1.1 Real and Imaginary numbers |
|  | $2^{\text {nd }}$ | 1.2 Complex numbers, conjugate complex numbers, Modulus and Amplitude of a complex number |
|  | $3{ }^{\text {rd }}$ | 1.3 Geometrical Representation of Complex Numbers. <br> 1.4 Properties of Complex Numbers |
|  | $4^{\text {th }}$ | 1.5 Determination of three cube roots of unity and their properties. |
| 2ND | $1{ }^{\text {st }}$ | 1.6 De Moivre's theorem |
|  | $2^{\text {nd }}$ | 1.7 Solve problems on 1.1-1.6 |
|  | $3{ }^{\text {rd }}$ | 2.Matrices <br> 2.1. Define rank of a matrix. <br> 2.2. Perform elementary row transformations to determine the rank of a |
|  | $4^{\text {th }}$ | 2.3. State Rouche's theorem for consistency of a system of linear equations in unknowns. |
| 3RD | $1{ }^{\text {st }}$ | 2.4. Solve equations in three unknowns testing consistency |
|  | $2^{\text {nd }}$ | 2.5. Solve problems on 2.1-2.4 |
|  | $3^{\text {rd }}$ | 3.Linear Differential Equations <br> 3.1. Define Homogeneous and Non - Homogeneous Linear Differential Equations with constant coefficients with examples |
|  | $4^{\text {th }}$ | 3.2. Find general solution of linear Differential Equations in terms of C.F. and P.I. |
| 4TH | $1{ }^{\text {st }}$ | 3.2. Find general solution of linear Differential Equations in terms of C.F. and P.I. |
|  | $2^{\text {nd }}$ | 3.3. Derive rules for finding C.F. And P.I. in terms of operator D, excluding. |
|  | $3{ }^{\text {rd }}$ | 3.3. Derive rules for finding C.F. And P.I. in terms of operator D, excluding. |
|  | $4^{\text {th }}$ | 3.4. Define partial differential equation (P.D.E) |
| 5TH | $1^{\text {st }}$ | 3.5. Form partial differential equations by eliminating arbitrary constants and arbitrary functions |
|  | $2^{\text {nd }}$ | 3.5. Form partial differential equations by eliminating arbitrary constants and arbitrary functions |
|  | $3{ }^{\text {rd }}$ | 3.6. Solve partial differential equations of the form $\mathrm{Pp}+\mathrm{Qq}=\mathrm{R}$ |
|  | $4^{\text {th }}$ | 3.7. Solve problems on 3.1-3.6 |
| 6TH | $1^{\text {st }}$ | 4.Laplace Transforms <br> 4.1. Define Gamma function and and find . |
|  | $2^{\text {nd }}$ | 4.2. Define Laplace Transform of a function and Inverse Laplace Transform . |
|  | $3^{\text {rd }}$ | 4.2. Define Laplace Transform of a function and Inverse Laplace Transform . |
|  | $4^{\text {th }}$ | 4.2. Define Laplace Transform of a function and Inverse Laplace Transform . |
|  | $1^{\text {st }}$ | 4.3. Derive L.T. of standard functions and explain existence conditions of L.T. |


| 7TH | $2^{\text {nd }}$ | 4.3. Derive L.T. of standard functions and explain existence conditions of L.T. |
| :---: | :---: | :---: |
|  | $3^{\text {rd }}$ | 4.4. Explain linear, shifting property of L.T. |
|  | $4^{\text {th }}$ | 4.5. Formulate L.T. of derivatives, integrals, multiplication by and division by . |
| 8TH | $1^{\text {st }}$ | 4.5. Formulate L.T. of derivatives, integrals, multiplication by and division by . |
|  | $2^{\text {nd }}$ | 4.6. Derive formulae of inverse L.T. and explain method of partial fractions . |
|  | $3^{\text {rd }}$ | 4.6. Derive formulae of inverse L.T. and explain method of partial fractions . |
|  | $4^{\text {th }}$ | 4.7. solve problem on 4.1-4.6 |
| 9TH | $1^{\text {st }}$ | 5.Fourier Series <br> 5.1. Define periodic functions |
|  | $2^{\text {nd }}$ | 5.2. State Dirichlet's condition for the Fourier expansion of a function and it's convergence |
|  | $3^{\text {rd }}$ | 5.2. State Dirichlet's condition for the Fourier expansion of a function and it's convergence |
|  | $4^{\text {th }}$ | 5.2. State Dirichlet's condition for the Fourier expansion of a function and it's convergence |
| 10TH | $1^{\text {st }}$ | 5.3. Express periodic function $F(X)$ satisfying Dirichlet's conditions as a Fourier series. |
|  | $2^{\text {nd }}$ | 5.3. Express periodic function $F(X)$ satisfying Dirichlet's conditions as a Fourier series. |
|  | $3^{\text {rd }}$ | 5.4. State Euler's formulae |
|  | $4^{\text {th }}$ | 5.5. Define Even and Odd functions and find Fourier Series in |
| 11TH | $1^{\text {st }}$ | 5.5. Define Even and Odd functions and find Fourier Series in |
|  | $2^{\text {nd }}$ | 5.6. Obtain F.S of continuous functions and functions having points of discontinuity |
|  | $3^{\text {rd }}$ | 5.6. Obtain F.S of continuous functions and functions having points of discontinuity |
|  | $4^{\text {th }}$ | 5.7. Solve problems on 5.1 - 5.6 b.Numerical IVlethods |
| 12TH | $1^{\text {st }}$ | 6.1. Appraise limitation of analytical methods of solution of Algebraic Equations. |
|  | $2^{\text {nd }}$ | 6.2. Derive Iterative formula for finding the solutions of Algebraic Equations by : <br> 6.2.1. Bisection method <br> 6.2.2. Newton- Raphson method |
|  | $3^{\text {rd }}$ | 6.2. Derive Iterative formula for finding the solutions of Algebraic Equations by : <br> 6.2.1. Bisection method <br> 6.2.2. Newton- Raphson method |
|  | $4^{\text {th }}$ | 6.3. solve problems on 6.2 |
| 13TH | $1^{\text {st }}$ | 7.Finite difference and interpolation <br> 7.1. Explain finite difference and form table of forward and backward difference |
|  | $2^{\text {nd }}$ | 7.2. Define shift Operator and establish relation between \& difference operator. |


|  | $\mathbf{3}^{\text {rd }}$ | 7.3. Derive Newton's forward and backward interpolation formula for equal <br> intervals |
| :--- | :--- | :--- |
|  | $\mathbf{4}^{\text {th }}$ | 7.4. State Lagrange's interpretation formula for unequal intervals. |
| $\mathbf{1 4 T H}$ | $\mathbf{1}^{\text {st }}$ | 7.5. Explain numerical integration and state: <br> 7.5.1. Newton's Cote's formula |
|  | $\mathbf{2}^{\text {nd }}$ | 7.5.1. Newton's Cote's formula |
|  | $\mathbf{3}^{\text {rd }}$ | 7.5.2. Trapezoidal rule |
|  | $\mathbf{4}^{\text {th }}$ | 7.5.2. Trapezoidal rule |
|  | $\mathbf{1}^{\text {st }}$ | 7.5.2. Trapezoidal rule |
|  | $\mathbf{2}^{\text {nd }}$ | 7.5.3. Simpson's 1/3rd rule |
|  | $\mathbf{3}^{\text {rd }}$ | 7.5.3. Simpson's 1/3rd rule |
|  | $\mathbf{4}^{\text {th }}$ | 7.6. Solve problems on 7.1-7.5 |

